如何满足复杂系统的高性能时序需求
时钟设备设计使用I2C可编程小数锁相环(PLL),可满足高性能时序需求,这样可以产生零PPM(百万分之一)合成误差的频率。高性能时钟IC具有多个时钟输出,用于驱动打印机、扫描仪和路由器等应用系统的子系统,例如处理器、FPGA、数据转换器等。此类复杂系统需要动态更新参考时钟的频率,以实现PCIe 和以太网等其它诸多协议。
时钟IC属于I2C从器件,需要主控制器来配置内部PLL逻辑,其控制逻辑可以写入微控制器内。作为I2C 主机,微控制器将配置写入时钟IC的内部易失性存储器并控制PLL。因此,可以通过板上MCU - IC组合进行系统时钟频率的动态更新。可编程微控制器为高性能时钟IC提供控制逻辑能力,通过减少板载IC和板上走线使整体设计更加紧凑,并降低最终物料成本。
操作理论
图1 为高性能时钟设备的基本PLL架构。该设计使用比例因子为PLL输出端口提供时钟合成。最终输出频率的基本公式为:
· fREF为输入参考晶体频率(在多数应用中通常为8 MHz 至48 MHz)。· div_R(div_R1 和div_R2)是输入频率参考的分频因子。此类分频器名为预分频器。
· div_N 为小数N 分频因子。
· div_O(div-O1、div-O2、div-O3 和div-O4)为输出前的后分频因子。
图1:简化高性能时钟的PLL 架构框图。
图1中的橙色框图为参数,使用这些参数的方程式为可编程方程式。这些参数可以在出厂时写入时钟设备的非易失性存储器。时钟设备具有内部易失性和非易失性存储器,两个存储器互相复制其内容。非易失性存储器在出厂时已被写入所需配置,在最终应用中,当设备启动电源时,非易失性存储器的内容会被复制到易失性存储器。同时,PLL产生所需的默认时钟输出。
时钟IC的重要特性之一就是通过I2C接口实现运行时可编程。通过可编程功能,用户可以更改设备的易失性存储器内容以进行即时更改。只需使用适当的I2C指令,就可以通过主控制器实现用户配置文件的即时编程功能。
设备的非易失性存储器还可以存储预定义的多用户配置。用户可以使用频率选择(Frequency Select, FS)功能以选择其中一个配置。该FS - 位为设备中可用的CMOS输入引脚。FS引脚应用N - 位外部CMOS信号,然后内部选择存储在非易失性存储器中的一个配置文件,这个配置文件同样也被复制到了易失性存储器,PLL则输出不同的信号。
同时,微控制器通过I2C提供数据来控制高频时钟。使用微控制器的优点是,它具有不同的通信外设和通信协议,如I2C、SPI、UART、蓝牙、ZigBee等,使得系统能够以主从配置将数据传输到其他微控制器,也可以使用一个自定义的应用传输至安卓和iOS设备。此外,微控制器还配有各种IDE工具用于简化设计。这可以更好地证明使用I2C指令来配置PLL参数、编写并验证定制应用程序是合适的。
高性能时钟的应用需求
高性能时钟IC专为消费者、工业和网络应用而设计。此类时钟IC具有多个从不同PLL导出的差分输出和单端输出,并且可以通过I2C接口实现可编程功能。此外,高性能时钟IC不仅可以支持PCI Express (PCIe) 1.0 / 2.0 / 3.0、USB 2.0 / 3.0和万兆以太网(GbE)等关键接口标准的参考时钟。还能支持压控晶体振荡器(VCXO)和频率选择(FS)等其他增值功能。
高性能时钟IC 采用设计实现I2C 从机模式。因此,需要一个板载I2C 主机来控制以下可编程功能:
· 通过I2C 接口进行系统内编程· 通过频率选择(FS) 引脚更新配置
· 外部复位操作
· 压控晶体振荡器(VCXO) 操作
图2:微控制器- 高性能时钟接口电路。
微控制器在时钟IC PLL控制中的作用
如图2所示,将时钟IC连接到微控制器电路。时钟IC具有内部PLL模块,其功能是提供作为固定直流电压的调谐电压(Vtune),而调谐电压将随频段而变化。PLL 模块在输入端接收本地振荡器频率,由内部前置放大器放大信号。另外,预分频器对输入频率进行下变频,并将其作为输入传送至相位比较器。
图3:PLL 模块的微控制器控制。
微控制器通过I2C发送数据到可编程分频器。该分频器也接收来自参考振荡器(例如4 MHz 晶体振荡器)的输入。相位比较器(即相位检测器)通过预分频器接收本地振荡器频率(例如87.15 MHz),还通过参考分频器和参考振荡器接收微控制器的输入(例如,87.15 MHz)。如果两个输入都匹配,相位比较器将提供Vtune 调谐电压。一旦本地振荡器频率与微控制器频率数据之间稍有不匹配,都将无法提供调谐电压(Vtune) 和输出。图3所示为完整的框图。
在微控制器的帮助下,PLL 通过调谐本地振荡器频率产生闭环,并在输出端产生调谐电压。调谐电压将从较低频
锁相环 相关文章:
- 精密频率合成技术助力多通道频率合成器的应用(06-08)
- 如何设计并调试锁相环PLL(03-19)
- 锁相环的工作原理及设计方法(06-19)