汽轮机差胀及机组噪声过大原因分析与改进
蒸汽不会发生凝结放热后, 蒸汽对金属的单位时间的放热量Q1 为:
Q1= (t蒸汽-t金属) αA金属 (2 )
式中t蒸汽为该段蒸汽的平均温度;
t金属为金属的平均温度;
α为放热系数;
A金属为金属的受热面积。
金属的单位时间的吸热量Q2 为:
Q2 = m金属cb金属 (3)
式中m金属为金属的质量; c 为金属的比热; b金属为金属的温升速度。
如果不计散热损失, 由Q1 = Q2 , 整理公式 (2 ),(3)得:
b金属=( t蒸汽- t金属) αA金属/(m金属c ) (4)
A金属/m金属称为质面比。
当机组启动升速或加负荷暖机前, 转子和汽缸与蒸汽的温差 (t蒸汽- t金属 )可以视为相等, 但在升速或加负荷暖机过程中, 由于放热系数α和质面比A金属m金属的不同, 转子与汽缸就会产生温差。汽缸的质量大, 接触蒸汽面积小; 转子质量小, 接触蒸汽的面积大, 另外, 转子转动时蒸汽对转子的放热系数比汽缸的要大, 所以转子温度变化快, 转子更接近于蒸汽温度, 因此, 在汽轮机启停和工况变化时, 转子随蒸汽温度的变化膨胀或收缩更为迅速。在每个暖机阶段, 转子温度逐渐升到比较接近周围蒸汽的温度之后, 温升率明显下降, 而汽缸则仍以接近于原来的温升率升高温度。因此经过一段时间后,汽缸与转子的温差缩小, 这样就可以升速或升负荷到下一暖机阶段。
在滑参数启动过程中, 对主汽参数的控制和金属的温升率的控制是防止汽轮机的正胀差值过大的主要手段。要防止蒸汽参数过高, 蒸汽参数过高会引起进汽量少, 暖机不均匀, 使转子加热过快, 汽缸加热相对过慢, 汽缸和转子的温差加大, 使得相对膨胀正值增加过快。
如在 2007年1号机开机, 主汽温度320℃, 压力2.7 MPa 时冲转。主汽温度365℃, 压力3.2 MPa 时并网, 相对膨胀增大至3.0 mm。锅炉蒸汽温度降至350℃时, 相对膨胀回落0.2 mm。
3. 3. 2控制轴封供汽对胀差的影响
高压汽轮机从调节汽室沿前轴封漏出的蒸汽,故前轴封段的转子温度较高, 且在汽轮机轴封处由于蒸汽流速高蒸汽的放热系数也大。再者, 高温高压汽轮机汽封段转子长度较大, 如果有效地降低轴封供汽温度, 对轴封段的正胀差减小是有利的。
轴封供汽有2 种来源: 厂用汽 压力0.89 MPa温度约280℃ 和高除汽平衡汽 压力约为0.5 MPa温度约158℃ 。运行中7 号机一般采用厂用汽作为轴封供汽的热源。在启动过程中, 转子轴封段温升率较快, 膨胀大, 应尽可能采用高除汽平衡汽源, 以低温蒸汽降低转子温升率。
在1 号机开机中, 尽快将高除压力升至正常, 将轴封汽源由厂用汽 280℃ 倒为汽平衡
158℃ 汽源, 对胀差的控制起到了较好的效果。
3. 3. 3汽缸、法兰螺栓加热装置投运对相对膨胀的影响
汽轮机在启动过程中, 使用汽缸法兰和螺栓加热装置可以提高汽缸、法兰和螺栓的温度, 有效地减少汽缸内外壁、法兰内外、汽缸与法兰、法兰与螺栓的温差, 提高汽缸的平均温度, 加速汽缸的膨胀。法兰加热装置的正确使用, 对高压汽轮机启动控制相对膨胀值有较明显的作用。
值得注意的是, 如果启动时加热过度, 汽轮机中间几级的轴向间隙小于允许的范围, 而相对膨胀表的指示仍然可能在正常范围内, 对机组的安全构成威胁, 所以法兰螺栓加热装置的投入时间和温度的控制是相当重要的。只有在时间合适和温度恰当
的情况下, 法兰螺栓加热装置才能起到控制相对膨胀的作用。
在1 号机开机中,7 号机冲转后, 胀差在0 mm 以上, 立即投法兰加热装置, 汽源温度260℃,
此时新蒸汽温度320℃。并网后倒为新蒸汽, 温度350℃, 法兰温度为170℃, 调节级温度为225℃, 相对膨胀值下降至0.19 mm , 汽缸法兰平均温升由原来的0.41 ℃/ min升至0.744 ℃/ min。
3. 3. 4凝汽器真空对控制相对膨胀的影响
在汽轮机启动过程中, 当机组维持一定转速或负荷时, 改变凝汽器真空可以在一定范围内调整胀差。当真空降低时欲保持机组转速或负荷不变, 必须增加进汽量, 使高压转子温升率加快, 其高压缸正胀差随之增大。由于进汽量的增加, 中、低压部分摩擦鼓风的热量被蒸汽带走, 因而转子被加热的程度减少, 正胀差减小。另外, 真空降低, 排汽缸温度的上升, 也会使中低压缸加快膨胀, 减少胀差。
在开机中, 真空控制在80~ 85 kPa, 排汽温度为100℃以内, 相对膨胀值有明显的回落。
3. 3. 5加热器和抽汽投入的影响
由于转子、汽缸与蒸汽的热交换以对流换热的形式进行, 当机组启动达到一定负荷后, 转子的温度已接近该段蒸汽温度, 转子的温升较慢, 而汽缸受质面比的影响, 尚未达到工作温度, 膨胀不完全,此时投入高加和抽
- 音频系统应用中的“POP”噪声以其常用解决方法(12-01)
- 运算放大器电路固有噪声的分析与测量(第二部分):运算放大器噪声介绍(05-12)
- 运算放大器电路固有噪声的分析与测量(第二部分):运算放大器噪声介绍(二)(05-12)
- 运算放大器电路的固有噪声分析与测量(07-14)
- 电源完整性与地弹噪声的高速PCB仿真(05-23)
- 九个步骤大幅降低移动电话非稳态噪声(06-22)
