隔离驱动IGBT和Power MOSFET等功率器件所需的技巧二
HCPL-316J 饱和阈值的顶点设置在7V,这是对通过一个比较实际的IGBT Vce饱和电压相比。操作时的DESAT保护有2个部分,1)I GBT的Vce电压检测和比较, 2)一旦越过阈值水平就激活DESAT保护; 1)检测部分,它仅在IGBT导通期间激活。 在IGBT关断期间,有个微小的晶体管是导通的以把DESAT电容放电到0V。 当IGBT导通后, 那微小的晶体管被立即??关闭,让250uA恒流,以充电电容,和/或直接流到IGBT,这取决于那个路径是处于较低电压路径。 因此,如果IGBT的开启和负载配合的饱和点在2V,恒定电流会流入DESAT电容,直到它到达2.7V,并从那时起,恒定电流将流经DESAT二极管(造成0.7V压降),并通过导通的IGBT。作为DESAT电容的电压只有2.7V,这仍然是比7V DESAT阈值设置低,保护电路将不会被激活。 但是,当发生过载或短路,VCE饱和电压将立即爬升,到如8V,因超过7V第二个部分就开始。恒定电流将继续充电DESAT电容到超过7V。由于DESAT电容电平跨越了7V DESAT门槛,比较器的输出被激活,保护电路也被激活。结果是故障信号,会通过光通道发送到故障引脚并把那个故障引脚电平拉低,以通知了解故障的MCU / DSP。在同一时间,那1X小粒晶体管会导通,把IGBT的栅极电平 通过RG电阻来放电。由于这种晶体管比实际关断晶体管更小约50倍, IGBT栅极电压将被逐步放电导致所谓的软关机。 Avago的应用笔记 AN5324提供更详细的软关断描述。
12、请问:故障保护功能有哪些?都是集成在隔离驱动器里吗?谢谢!
3种故障保护功能都集成到Avago的高集成栅极驱动器ACPL-33xJ里 - UVLO(以避免VCC2电平不足够时开启IGBT),DESAT(以保护IGBT过电流或短路),和米勒钳位(以防止寄生米勒电容造成的IGBT误触发)
13、请问:如何避免米勒效应?谢谢!
IGBT操作时所面临的问题之一是米勒效应的寄生电容。这种效果是明显的在0到 15 V类型的门极驱动器(单电源驱动器)。门集-电极之间的耦合,在于IGBT关断 期间 , 高dV / dt瞬态可诱导寄生IGBT道通(门集电压尖峰),这是潜在的危险。
当上半桥的IGBT打开操作,dVCE/ dt电压变化发生跨越下半桥的IGBT。电流会流过米勒的寄生电容,门极电阻和内部门极驱动电阻。这将倒至门极电阻电压的产生。如果这个电压超过IGBT门极阈值的电压,可能会导致寄生IGBT道通。
有两种传统解决方案。首先是添加门极和发射极之间的电容。第二个解决方法是使用负门极驱动。第一个解决方案会造成效率损失。第二个解决方案所需的额外费用为负电源电压。
我们的解决方案是通过缩短门极 - 发射极的路径, 通过使用一个额外的晶体管在于门极 - 发射极之间。 达到一定的阈值后,晶体管将短路门极 - 发射极地区。这种技术被称为有源米勒钳位, 提供在我门的ACPL-3xxJ产品。你可以参考Avago应用笔记 AN5314
14、请问:对于工作于600V直流母线的30~75A、1200V IGBT而言,ACPL-33x、ACPL-H342 这5颗带miller钳位保护的栅极驱动光耦能否仅以单电源供电就能实现高可靠性驱动,相比于传统的正负供电,可靠性是更高,还是有所不足?谢谢!
Avago ACPL-332J, ACPL-333J 以及 ACPL-H342 的门极驱动光耦可以输出电流 2.5A。这些产品适合驱动1200V,100A类型的IGBT。
1)当使用负电源,就不需要使用米勒箝位,但需花额外费用在负电源上。
2)如果只有单电源可使用,那么设计者可以使用内部内置的有源米勒箝位。
这两种解决方法一样可靠。米勒箝引脚在不使用时,需要连接到VEE。
15、请问:在哪些应用场合需要考虑米勒效应的影响?谢谢!
IGBT操作时所面临的问题之一是米勒效应的寄生电容。这种效果是明显的在0到 15 V类型的门极驱动器(单电源驱动器)。门集-电极之间的耦合,在于IGBT关断 期间 , 高dV / dt瞬态可诱导寄生IGBT道通(门集电压尖峰),这是潜在的危险。
当上半桥的IGBT打开操作,dVCE/ dt电压变化发生跨越下半桥的IGBT。电流会流过米勒的寄生电容,门极电阻和内部门极驱动电阻。这将倒至门极电阻电压的产生。如果这个电压超过IGBT门极阈值的电压,可能会导致寄生IGBT道通。
有两种传统解决方案。首先是添加门极和发射极之间的电容。第二个解决方法是使用负门极驱动。第一个解决方案会造成效率损失。第二个解决方案所需的额外费用为负电源电压。
我们的解决方案是通过缩短门极 - 发射极的路径, 通过使用一个额外的晶体管在于门极 - 发射极之间。 达到一定的阈值后,晶体管将短路门极 - 发射极地区。这种技术被称为有源米勒钳位,
- 用IGBT代替MOSFET的可行性分析(11-27)
- 以创新的IGBT技术、合理的器件选型和有效的系统手段优化变频器设计(01-09)
- 智能功率IGBT和MOSFET让汽车更加舒适环保(01-09)
- 单电源供电的IGBT驱动电路在铁路辅助电源系统中的应用(01-16)
- 面向汽车应用的IGBT功率模块浅谈(05-13)
- 使用栅极电阻控制IGBT的开关(04-13)