全高清电视能效规范
全高清电视能效规范
全高清(Full HD)电视已开始赢得消费者的青睐。目前,24或26英寸以上尺寸的液晶电视已可以支持全高清,而从实用角度来看,只有达到37英寸以上的全高清电视才能带给消费者更佳的显示效果和观赏体验。因此,更大尺寸的液晶电视会引领未来的全高清市场。
然而,对更佳视觉效果的追求也带来了大大超过以往的功耗挑战。较高的功率消耗不仅会增加消费者的电费开支,而且不配合各国节能降耗的宏观推动。各国政府都出台了各种绿色能效指令,如美国“能源之星”3.0版电视规范、功率因数校正(PFC)规范等;消费者也越来越关注小尺寸、多功能、节能省电等问题。在能效规范和环保意识的推动下,电源设计也在不断推陈出新。本文针对未来将占据全高清电视最大市场份额的较大尺寸液晶电视,探讨有关的电源方案。
传统电源方案的弊端
传统液晶电视电源主要由交流-直流(AC-DC)转换、直流-直流(DC-DC)转换及高压逆变器几部分组成。AC-DC和DC-DC在同一块电路板上,逆变器在另一块电路板上,通常与液晶面板在一起。其中,AC-DC电源部分将市电110Vac/220Vac电压进行整流、PFC和滤波,再转换为200V/400V的直流高压。由于传统逆变器的输入电压要求为24V,所以200V/400V的PFC的输出电压要经过降压转换,以产生多路输出电压,其中一路24V电压提供给逆变器,即再经过直流-交流(DC-AC)转换为超过1,000V甚至达2,000V的高压,以便驱动液晶面板的CCFL背光灯。这种标准24V逆变器液晶电视开关电源的功能框图如图1所示。
图1 采用标准直流24V逆变器的传统液晶电视开关电源框图。
取代传统电源方案的LIPS解决方案
目前,上述传统电源仍然占市场上的液晶电视电源的大多数。为了符合各种能效规范,降低较大尺寸液晶电视的电能消耗,降低系统成本及减小解决方案尺寸,使之更受消费者青睐,可以通过多种途径设计液晶电视电源。
针对26英寸及以上尺寸的液晶电视,近年来出现了一种新的逆变器概念——高压液晶显示集成电源(LCD Integrated Power Supply,缩写为LIPS)。与采用位于独立电路板上逆变器的传统电源不同,这种LIPS解决方案将AC-DC、DC-DC和逆变器整合在同一块电路板上,在经过对市电的整流、PFC和滤波并获得200V/400V直流电压后,将直接采用200V/400V作为逆变器的输入电压,通过DC-AC升压转换为液晶面板所需的1,000V以上,甚至高达2,000 V的电压。这样就省去了24 V转换段,减少了先降压至24 V再大幅升压背光源用一两千伏高压过程中的大量功率损耗,从而提升了系统能效,减少底盘发热量,并降低了总成本。
图2 安森美半导体针对32英寸液晶电视的全桥高压LIPS解决方案功能框图。
在这方面,安森美半导体与Microsemi公司充分发挥各自专长合作开发了适合多种功率等级的高压LIPS整套解决方案。针对32英寸液晶电视的LIPS解决方案如图2所示。在系统主板电源方面,这个解决方案采用了安森美半导体的NCP1606 PFC控制器,以及作为辅助开关电源的NCP1351 PWM控制器;在LIPS逆变器部分,采用了Microsemi使用软开关技术的LX6503移相全桥驱动器,它可以在固定工作频率进行零电压开关(ZVS)。与半桥架构相比,这种全桥逆变器解决方案具有显著优势,如减少电磁干扰(EMI)和功率损耗,同时改善背光灯的驱动电流波形,无需在桥上使用额外的功率二极管。这个全桥结构所采用的4个MOSFET和变压器中的电流规格是半桥结构的一半,这样就可以通过隔离变压器直接驱动功率MOSFET,更易于实现初级端过流保护(OCP)等功能。
为了更好应对市场对更大尺寸LIPS液晶电视的需求,安森美半导体计划于2009年推出下一代46英寸的参考设计,在LIPS逆变器部分将采用与32英寸方案相同的全桥逆变器和背光控制器LX6503,但会大幅提高输出功率,以驱动更多的CCFL灯。而在系统主板电源方面,可以根据具体设计要求来灵活选择安森美半导体的解决方案,如NCP1601、NCP1606或NCP1631等PFC控制器,以及NCP1351或NCP1379等PWM控制器。这个新方案采用带继电器的专用待机开关电源,支持低至150mW的超低待机能耗,而电路板上的元件高度则低于16mm(系统总度度低于20mm),支持更纤薄液晶电视设计。
此外,针对北美、中国及欧盟等不同区域市场电源的不同要求,安森美半导体针还可以提供符合相应规范的电源方案,以优化设计、缩小系统尺寸并降低成本。
超薄全高清电视设计的先进PFC架构
如今,液晶电视的厚度已经越来越薄,最新的趋势是电子模块部分的厚度接近10mm以下。如此纤薄的厚度,给电源设计带来了更严峻的挑战,通常需要使用低高度的变压器(这对要考虑隔离和漏电的高压LIPS特别关键)或将多个部件(PFC线圈)串联起来,并采用低高度的散热片,对部件进行水平安装,还要将垂直插入的所有电容的高度限制在10mm以下。
- 全高清电视的电源发展趋势解析(04-16)
- 12位串行A/D转换器MAX187的应用(10-06)
- AGC中频放大器设计(下)(10-07)
- 低功耗、3V工作电压、精度0.05% 的A/D变换器(10-09)
- PIC16C5X单片机睡眠状态的键唤醒方法(11-16)
- 用简化方法对高可用性系统中的电源进行数字化管理(10-02)
- 婵°倕鍊瑰玻鎸庮殽閸モ晙鐒婇柛鏇ㄥ灱閺嗐儳鈧鎮堕崕鎶藉煝閼测晜鏆滈柛顐g箓閹鏌熺€涙ê濮囬柣鎾规硶閹峰顢橀悢鍛婄暚缂備礁顑呴鍛淬€冨⿰鍛晳闁跨噦鎷�
闂佺ǹ绻堥崝宥夊蓟閻斿憡濯寸€广儱鎷嬮崝鍛槈閺冨倸孝闁汇劎濮甸敍鎰板箣濠婂懐鎳囨繛鎴炴尰濮樸劑鎮¢敍鍕珰闁糕槅鍘剧粈澶愭煙缂佹ê濮囩€规洖鐭傞幆宥夊棘閸喚宀涢悗瑙勬偠閸庢壆绱為弮鍫熷殑闁芥ê顦~鏃堟煥濞戞ǹ瀚板┑顕呬邯楠炲啴濡搁妷锕€娓愰梻渚囧亞閸犳劙宕瑰鑸碘拹濠㈣埖鐡曠粈瀣归崗鍧氱細妞ゎ偄鎳橀幆鍐礋椤愩倖顔忔俊顐ゅ閸ㄥ灚瀵奸幇顔剧煓閻庯綆浜為悷锟�...
- 婵炴垶鎼╅崢鐐殽閸モ晙鐒婇柛鏇ㄥ灱閺嗐儳鈧鎮堕崕鎶藉煝閼测晜鏆滈柛顐g箓閹鏌熺€涙ê濮囬柣鎾规硶閹峰顢橀悢鍛婄暚缂備礁顑呴鍛淬€冨⿰鍛晳闁跨噦鎷�
缂備緡鍣g粻鏍焵椤掑﹥瀚�30婵犮垼鍩栧畝绋课涢鍌欑剨闁告洦鍨奸弳銉╂煕閳哄喚鏀版い鏂垮閹风娀宕滆閺屻倝鏌ㄥ☉妯侯殭缂佹鎸鹃埀顒傤攰閸╂牕顔忕捄銊﹀珰闁规儳鎳愮粈澶愭煕閺傜儤娅呮い鎺斿枛瀹曘劌螣閻戞ê娓愰梻渚囧亞閸犳洟骞撻鍫濈濡鑳堕鍗炩槈閹垮啩绨婚柟顔奸叄瀵粙鎮℃惔锝嗩啅婵☆偆澧楅崹鍨閹邦喚鐭欓悗锝庝簽閻熷酣鏌i妸銉ヮ伂妞も晪绠戞晥闁跨噦鎷�...
- Agilent ADS 闂佽桨鐒﹂悷銉╊敆閻旂厧鏄ョ痪顓炴媼閸炴煡鎮归崶褍鈷旈柍璇插悑缁鸿棄螖閸曞灚顥�
婵炴垶鎸婚幐鎼侇敊瀹ュ绠抽柛顐秵閸わ箓鏌ㄥ☉妯垮闁告瑥绻樺Λ鍐閿濆骸鏁奸柣鐔哥懐閺嬪儊S闂佸憡鑹剧€氼噣锝為幒妤€绀夐柣鏃囶嚙閸樻挳鏌涘⿰鍐濞村吋鍔楃划娆戔偓锝庝簽鐎瑰鏌i姀鈺冨帨缂侀亶浜跺畷婵嬪煛閸屾矮鎲鹃梺鐑╁亾閸斿秴銆掗崼鏇熷剹妞ゆ挾濮甸悾閬嶆煛閸愩劎鍩f俊顐ユ硶閳ь剚鍐荤紓姘辨閻у挷S...
- HFSS闁诲孩鍐荤紓姘卞姬閸曨垰鏄ョ痪顓炴媼閸炴煡鎮归崶褍鈷旈柍璇插悑缁鸿棄螖閸曞灚顥�
闁荤姍鍐仾缂佽鐒︾粙澶愬箻閹颁礁鏅欓梺鐟版惈閻楁劙顢氶幎鑺ユ櫖閻忕偠妫勫鍧楁⒒閸稑鐏辨い鏂款樀楠炴帡宕峰▎绂⊿闂佹眹鍔岀€氼剚鎱ㄥ☉銏″殑闁芥ê顦扮€氭煡骞栫€涙ɑ鈷掗柡浣靛€濋弫宥囦沪閽樺鐩庨梺鍛婃煛閺呮粓宕戝澶婄闁靛ň鏅滃銊х磼椤栨繂鍚圭紒顔芥そ瀹曠兘寮跺▎鎯уΤ婵炴垶姊绘慨鐢垫暜婢舵劕绠垫い鈥抽敪SS...
- CST閻庣敻鍋婇崰妤冧焊濠靛棭鍟呴柕澶堝€楃粙濠囨倵楠炲灝鈧洟鎮$捄銊﹀妞ゆ挾鍠愬▓宀€绱掔€n亶鍎忔い銊︾矌閹叉鏁撻敓锟�
闂佸搫顦€涒晛危閹存緷铏光偓锝傛櫅閻︽粓鎮规担绛嬪殝缂佽鲸绻堝畷妤呭Ω閳哄倹銆冮柣鐘辩瀵泛顔忕欢缍璗闂佸憡鑹剧€氫即濡村澶婄闁绘棁顕ч崢鎾煕濠婂啳瀚板ù鍏煎姉缁瑧鈧綆浜炵€瑰鏌i姀鈺冨帨缂佽鲸绻堝畷婵嬪煛閸屾矮鎲鹃棅顐㈡祩閸嬪﹪鍩€椤掑倸鏋欓柛銈嗙矌閳ь剚鍐婚梽鍕暜婢舵劕绠垫い鈥愁敍T闁荤姳鐒﹀畷姗€顢橀崨濠冨劅闁哄啫鍊归弳锟�...
- 闁诲繐绻愮€氫即銆傞崼鏇炴槬闁惧繗顕栭弨銊╂煕閳哄喚鏀版い鏂垮閹风娀宕滆閺岋拷
婵炴垶鎸稿ú锝囩箔閳ь剙螖閸屾惮鎴﹀Χ婵傚摜宓侀柛鎰级閸曢箖鎮硅閸ゆ牜妲愬┑鍥ㄤ氦婵炲棗娴烽弰鍌炴偣閸パ冣挃闁宠鍚嬬粙澶嬫姜閹殿喚鈽夐梺闈╄礋閸斿矂鎯冮悩绛圭矗闁瑰鍋涜灇闂佸搫鐗滈崹鍫曘€傞锕€鏄ラ柣鏃€鐏氭禍锝夋倶閻愬瓨绀冮悗姘辨暬閹虫ê顫濋崜褏顦梺鐟扮仛閹搁绮崨鏉戦敜婵﹩鍓涢弶浠嬫煟閵娿儱顏х紒妤佹尰缁嬪顫濋鍌氭暏缂佺虎鍘搁崑锟�...
- 閻庣敻鍋婇崰妤冧焊濠靛牅鐒婇柛鏇ㄥ灱閺嗐儲绻涢弶鎴剶闁革絾妞介獮娆忣吋閸曨厾鈻曢梺绯曟櫇椤㈠﹪顢欓崟顓熷珰闁告挆鈧弻銈夋煕濮橆剛澧︽繛澶涙嫹
闁荤姵鍔﹂崢娲箯闁秴瑙﹂柛顐犲劜閼茬娀鏌¢崶銊︾稇闁汇倕瀚伴獮鍡涙偑閸涱垳顦紓鍌氬暞閸ㄧ敻宕规惔銊ノュ〒姘e亾妞わ絽澧庨幏顐﹀矗濡搫纾块梺闈涙閼冲爼濡靛顑芥灃闁靛繒濮甸悵銈夋煏閸℃洘顦峰ǎ鍥э躬瀹曪綁鏌ㄧ€n剛鍩嶉梺鎸庣☉閺堫剟宕瑰⿰鍛暫濞达絽婀辨竟澶愭煛瀹ュ妫戠紒銊ユ健閺屽懘鏁撻敓锟�...