解析PCB电路设计中布线的EMC
的布线层应当垂直,这样可以减小层间电容耦合;8)加强信号与地面之间的间隔和距离控制;9)布线层要单独隔开,必须以相同轴线布线,确保布线层分置预实心平面结构之中。
4 印制线路板内部元器件的走线分布
通常情况下,功能单元与设备满足电磁兼容性要求,主要是由电路的基本元件满足电磁特性的程度决定。
选择电磁元件时,电磁特性和电路装配是必须考虑的两个因素,否则选出的电磁元件是劣质的。这主要是因为远离基频的元件响应特性决定了电磁兼容性是否实现。大多情况下,对外响应(比如引线的长度)和元件之间耦合的程度由电路装配决定。需要注意以下几点。
PCB大小是首先要考虑到的一个因素。PCB尺寸要适中,过大过小都不合要求。如果太过,则印制时需有很多的线条,以此来增加阻抗、下挫抗噪声性能,然其成本会随之增加;如果太小,则缺乏散热能力,受干扰对象便会扩展至相邻的线条。基于此,在确定特殊元件的位置之前,应当充分地测量PCB实际规格和尺寸;以电路功能为基础,对电路中的所有元器件统一的规划和调整。实际操作过程中,为了能够最
大限度的降低高频元器件线路耗损、降低参数分布复杂性,避免电磁干扰,就要想尽办法隔开,让输入和输出元件之间存在距离。缩小元器件或导线之间的较高的电位差,避免因放电而造成短路问题。电路调试过程中,若元器件带有高电压,则应当尽可能置于不容易碰到的位置。
同时还要注意用支架对其进行有效的固定,若焊接159以上的元器件。则体型相对较大、较沉重的发热元器件就不能适应印制板,应该被淘汰。这种元器件应该被配置在机箱的底板上。在安装的同时应该将散热问题考虑在内。热敏元件不能靠近发热元件。
整机的结构要求应首先被考虑,特别是在布局可调节的元件时,比如电位器,开关等。如果是机内调节的情况,那么应被安置在便于调节的区域,比如印制板的上面;如果是机外调节,则需考虑调节旋钮。
印制板定位孔和固定支架需要的区域首先要腾出。对电路的全部元器件进行分布设置时,要依据其功能单元,因此,要做到以下几点:1)为了使信号更加流通,要考虑电路的流程,每个功能电路单元要被放置在合理的区域内,这样也能使信号最大限度在统一的方向上;2)在进行布局时,要紧紧围绕各个功能电路的核心元件这一核心。元器件在排列时,应注意匀称、不杂乱、紧密这些原则。连接各元器件之间所用的导线要尽量减少;3)电路在高负荷状态下运行时,需考虑实际分布状况。最大限度地使元器件平行分布于电路之中。平行分布可以使外表状况看上去更好看,方便装焊,对大量的生产也有很大帮助;4)处于电路板边缘的元器件,其位置与电路板中心距离不可超过2毫米;对于电路板而言,建议设计成矩形。长是宽的1.5倍.或是1.3倍。
5 常用的EMC设计软件
PCB板与外部的接口处的电磁辐射是分析时需要考虑的因素。此外,还要考虑PCB板中电源层的电磁辐射以及大功率布线网络的辐射问题。现在,在设计EMC软件时已经大量的应用了板级与系统级互连仿真,这两者主要是建立在Cadence公司的技术上的。同时,SI/PUEMI的模拟分析也被应用于其中。
德国的INCASES公司发明了EMC-WORKBENCH,这一软件在EMC模拟仿真分析有着重要的推动力。因此,INCASES公司成为行业的领军者,为EMC的进展做出重大贡献。EMC-WORKBENCH为设计者提供帮助,特别是在电磁兼容这一技术难点上。同时使得设计过程发生改变,减少了工作量,删去了一些设计程序。由于EMC模拟仿真技术的应用,因此促使PCB设计快步进入到一个崭新的时代,尤其是电子工程人员利用该技术可实现短期的高质量、高可靠性设计。在实施EMC模拟仿真分析过程中,必然给电路设计、PCB制造行业的发展带来更大的机会和更为广泛的发展空间。实践中可以看到,一块电路板可能来自于很多个生产厂家,而且他们的功能性存在着较大的差异,设计人员在对EMC进行分析时,需全面了解元器件的自身特点,让后方可对其进行具体的模拟仿真操作。该项操作若以传统的视角来看,似乎是一项非常艰巨的工程,然IBIS SPICE的出现,对EMC问题分析而言,起到了非常大的促进作用。
6 结束语
总而言之,在PCB实际设计过程中,一定要严格按照相关设计规范进行,要符合抗干扰设计之原则和要求,只有这样才能使电子电路处于最佳的性能状态。PCB设计初期阶段,需要对布线中的问题进行全面的考虑,这样才能有效减少设计周期,提高设计质量。
- 电源管理总线的结构与优势(11-19)
- 如何设计一个合适的系统电源(上)(11-20)
- 新型灌封式6A至12A DC-DC μModule稳压器系列(11-19)
- 如何设计一个合适的系统电源(下)(11-20)
- PCB电源供电系统的分析与设计(11-21)
- LVDS技术原理和设计简介(01-26)