微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 半导体器件的电气过应力和静电放电故障

半导体器件的电气过应力和静电放电故障

时间:10-16 来源:互联网 点击:

测试中,无论IC出现哪种形式的故障模式,栅氧化层、导电棒与结点一般都会损坏。图3给出了测试设置和电流波形图的特征。首先串联1MΩ电阻和100pF电容器,然后施加高电压。电容器充满电后,通过1.5kΩ电阻放电至DUT引脚。

充电器件模型(CDM)

CDM可仿真HBM测试无法仿真的现场故障损坏。CDM仿真的情形是:利用摩擦起电效应直接给器件充电,或者通过静电感应间接给器件充电(静电荷存储于零部件本体之中,通过外部地面放电)。

图4:ESD--CDM测试设置与电流波形图

本测试旨在仿真生产环境下的各种情形,譬如处理机械器件等等,器件沿输送管道或测试处理机滑下,积累电荷,随后该电荷又被放电至地面。CDM ESD测试和典型的电流波形图参见图4。外部地面接触被充电器件的DUT引脚之后,器件则将所存储的电荷放电至外部地面。在CDM测试中,器件在测试固定装置上,背面始终朝上,如图4所示。

CDM电流高于HBM,因为路径中并没有限流电阻器限制放电。对于500V的测试电压而言,电流波形上升时间一般在400皮秒左右,峰值电流为6A左右,峰值电流持续时间为1.5至2纳秒。对于1000V的测试电压而言,峰值电流强度为12A。

机器模型(MM)

机器模型又被称为0欧模型,旨在仿真通过器件向地面放电的机器。MM测试中,故障模式类似于HBM测试。在测试设置中,高压(HV)电源与电阻串联,给电容器充电,利用开关将电容与高压电源切断,然后将电容器连接至电感器进行放电。电感器产生振荡电流波形。MM所采用的基本测试电路和HBM一样,但R=0Ω、C=200pF,如图5所示。充电时,200pF的电容器充当金属处理器等导电性物体,使用1MΩ电阻和0.5μH电感器进行放电。MM测试的应用没有HBM测试普遍。MM电流特征波形由正向正弦波峰和负向正弦波峰组成,这两个波峰均呈指数衰变。

图5:ESD--MM测试设置与电流波形图

HBM、CDM与MM的对比

HBM与MM的上升时间(即10秒左右)和总持续时间相似,因此,它们的焦耳热效应相当,故障机制也因此类似。MM测试中,故障特征和放电过程与HBM测试大体相同。因此,HBM测试可以保证MM的ESD稳健性。通常而言,MM ESD的应力水平比HBM ESD低10倍左右。HBM保护电压通常是2kV左右,而MM则为200V左右,CDM为500V左右。CDM与HBM和MM截然不同,因此,CDM与它们无任何关联。目前,普遍采用CDM和HBM测试ESD保护电路。图6给出了HBM、MM和CDM的电流波形。CDM波形对应最短的已知ESD事件,上升时间为400皮秒,总持续时间为2秒左右。

图6:HBM、CDM与MM的电流波形图

ESD抗扰度分类

我们通过上文已经了解了不同模型的ESD测试步骤与设置。器件的ESD灵敏度度可定义为:该器件能够通过的最高ESD测试电压和让其产生故障的最低ESD测试电压。每个模型都有自己的分类,以便按照ESD灵敏度对器件进行分类。表2、3、4列出了HBM、CDM与MM的分类情况。

表2:HBM的ESD抗扰度分类

表3:CDM的ESD抗扰度分类

表4:MM静电放电扰度分类

遭受ESD应力的IC有着明显的故障特征。高电流会融化半导体结构的不同区域(ESD-HBM),而高电场则会破坏电介质(ESD-CDM)。ESD引发的最常见故障模式就是输入/输出引脚处漏电或电阻短路,通过测试台或ATE测试检测现场返修的产品就能发现这种情况。其它故障模式包括高关闭电流(IDDS)、供电电流(IDD)和无输出等开放引脚。开路和短路可通过I-V曲线跟踪测试台观察到。内部电路损坏检测则需要高级故障分析技术。在本节中,我们将详细介绍ESD/EOS损坏器件的电气和物理分析。

HBM和CDM代表不同的EOS类型。EOS和ESD可以多种方式损坏半导体器件。大多数EOS和ESD造成的故障都跟以下故障机制有关:

● 热损坏或燃烧金属化

● 氧化物或电介质击穿

● 接触损坏或结点损坏

热损坏

热损坏是一种EOS和ESD机制。由于EOS-ESD事件中生成大量热量,金属导体或电阻接头熔化。作为保险丝的金属线熔化变成开路。EOS、ESD-HBM事件中会观察到金属熔化。不过,如果导体膜较厚,金属会部分熔化,可能影响器件的功能。如果金属线电阻为R,电流为IESD,那么产生的功耗为P=I2ESD*R。当局部热量造成温度上升到金属线的熔点时,就会出现金属熔化。以下给出了一些EOS和ESD-HBM的实例。

在图7中,器件的引脚至引脚I/V曲线没出现短路、开路等不正常情况,但取下后SEM出现燃烧金属化。

图7:EOS造成的燃烧金属化图示

氧化物或电介质击穿

氧化物击穿可分为软击穿或硬击穿。软击穿是指电介质上的高电阻电流路径,而硬击穿是指电解质层上的高传导性路径。在氧化物软击穿中,器件仍能良好工作,晶体管性能不会发生很大变化。这时会发现漏电情况比

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top