零基础学FPGA(八)手把手解析时序逻辑乘法器代码
时间:02-25
来源:互联网
点击:
上次看了一下关于乘法器的Verilog代码,有几个地方一直很迷惑,相信很多初学者看这段代码一定跟我当初一样,看得一头雾水,在网上也有一些网友提问,说这段代码不好理解,今天小墨同学就和大家一起来看一下这段代码,我会亲自在草稿纸上演算,尽量把过程写的详细些,让更多的人了解乘法器的设计思路。
下面是一段16位乘法器的代码,大家可以先浏览一下,之后我再做详细解释
module mux16(
clk,rst_n,
start,ain,bin,yout,done
);
input clk; //芯片的时钟信号。
input rst_n; //低电平复位、清零信号。定义为0表示芯片复位;定义为1表示复位信号无效。
input start; //芯片使能信号。定义为0表示信号无效;定义为1表示芯片读入输入管脚得乘数和被乘数,并将乘积复位清零。
input[15:0] ain; //输入a(被乘数),其数据位宽为16bit.
input[15:0] bin; //输入b(乘数),其数据位宽为16bit.
output[31:0] yout; //乘积输出,其数据位宽为32bit.
output done; //芯片输出标志信号。定义为1表示乘法运算完成.
reg[15:0] areg; //乘数a寄存器
reg[15:0] breg; //乘数b寄存器
reg[31:0] yout_r; //乘积寄存器
reg done_r;
reg[4:0] i; //移位次数寄存器
//------------------------------------------------
//数据位控制
always @(posedge clk or negedge rst_n)
if(!rst_n) i 5'd0 && i >1; //移位不累加
end
else if(i == 5'd16 && areg[15]) yout_r[31:16]
以上部分是最主要的计算部分,其他地方相对来说还比较简单,例如当乘数某一位为0时,不用累加,直接右移,当i计数到16时,此时就不用再移位了,可以直接用位数表示,直接累加即可。
下面是仿真图
下面是一段16位乘法器的代码,大家可以先浏览一下,之后我再做详细解释
module mux16(
clk,rst_n,
start,ain,bin,yout,done
);
input clk; //芯片的时钟信号。
input rst_n; //低电平复位、清零信号。定义为0表示芯片复位;定义为1表示复位信号无效。
input start; //芯片使能信号。定义为0表示信号无效;定义为1表示芯片读入输入管脚得乘数和被乘数,并将乘积复位清零。
input[15:0] ain; //输入a(被乘数),其数据位宽为16bit.
input[15:0] bin; //输入b(乘数),其数据位宽为16bit.
output[31:0] yout; //乘积输出,其数据位宽为32bit.
output done; //芯片输出标志信号。定义为1表示乘法运算完成.
reg[15:0] areg; //乘数a寄存器
reg[15:0] breg; //乘数b寄存器
reg[31:0] yout_r; //乘积寄存器
reg done_r;
reg[4:0] i; //移位次数寄存器
//------------------------------------------------
//数据位控制
always @(posedge clk or negedge rst_n)
if(!rst_n) i 5'd0 && i >1; //移位不累加
end
else if(i == 5'd16 && areg[15]) yout_r[31:16]
以上部分是最主要的计算部分,其他地方相对来说还比较简单,例如当乘数某一位为0时,不用累加,直接右移,当i计数到16时,此时就不用再移位了,可以直接用位数表示,直接累加即可。
下面是仿真图
- 基于ARM的嵌入式系统中从串配置FPGA的实现(06-09)
- FPGA按键模式的研究与设计(03-24)
- 周立功:如何兼顾学习ARM与FPGA(05-23)
- 验证FPGA设计:模拟,仿真,还是碰运气?(08-04)
- 初学者如何学习FPGA(08-06)
- 为何、如何学习FPGA(05-23)