GaN是救世主,能拯救电源工程师吗?
时间:04-11
来源:互联网
点击:
硅MOSFET恢复测量
为了用一个硅MOSFET桥获得基线Qrr测量值,我掏出一把切割刀,在TPS40170EVM-597上为分流电阻器辟出了一个安全岛,并将这个分流电阻器放置其中。我使用的是一条50Ω SMA至BNC电缆,将信号传送到这个示波器(与50Ω的电阻值端接)。我串联了一个50Ω的电阻器,这样的话,我得到一半的信号值,不过没有振铃。注意在同时使用不同类型的探头时要进行失真调节!
需要注意的一点是,当分流电阻器位于顶端时,这个示波器被接地至正输入电压轨。这意味着电源正输出被接地(负电源接至降压转换器),任何其它测试设备,比如说负载测试器,一定不能使流经示波器连线的电源短路。图6显示的是经修改的评估模块 (EVM) 电路原理图。

图6:用于反向恢复测量的经修改的硅桥
图7显示了插入分流电阻器后的TPS40170 EVM。

图7:EVM探测技术
图8显示的是开关节点,以及300kHz, 24VIN, 5VOUT 和4AOUT 时的分流波形。

图8:硅桥开关波形
在图8中,黄色是软件节点,而紫色表示的是顶部FET漏极电流。电流平均值的“三角”波形与4A负载完美匹配 -> 20mV = 4A。
在图9中,针对TPS40170/硅MOSFET的高亮反向恢复电荷用红色显示(使用的是CSD185363A)。峰值恢复电流为18A左右 (90mV),据我估算,对于24V*300KHz*100nC = <720mW的损耗,Qrr大约小于100nC。需要注意的是,这个电流在“红色区域”内的部分在开关节点上升时流入负载,所以估算值也许会比Qrr高一点。

图9:硅桥反向恢复
想象一下这种情况!每3.3μs从输入电源汲取一个18A、12ns宽的电流脉冲。高di/dt将导致所有功率级中的环路电感产生出电压,并且有可能造成运行问题。幸运的是,TPS40170EVM-597具有一个可以缓解这些问题的极佳布局布线―实际上,这些问题并不会一直出现。
进入GaN,恢复在哪?
我使用了同样的技术来测量LMG5200 GaN(氮化镓)EVM。我首先当LMG5200EVM在负载为4A,将24V驱动为5V时,抓取了一个LMG5200EVM开关节点电压的参考示波器波形图。我使用的是一台安捷伦33220A,在300kHz时,将一个固定的21%左右的占空比驱动至LMG5200 PWM输入。请见图10,通道1显示的是开关节点波形。

图10:LMG5200 GaN开关波形
我将高/低驱动信号包括在内,作为参考(通道3&4)。这个“体二极管”传导比MOSFET的体二极管有更高的压降―我在这段时间看到的压降是2.5V左右,而不是大约0.6V。我抓取了这幅示波器波形图的原因在于,我将要在输入环路中增加一个会导致更多振铃的电阻器/电感。
图11显示的是在我将分流电阻器添加到上桥GaN器件的漏极后的变化。

图11:GaN开关波形探测技术
需要注意的是,我必须用一个电平位移电路(简单的PNP和电阻器)来将300kHz 21%占空函数发生器信号从“接地”(现在为24V电源的正值侧)电平位移至-24V上的PWM输入。如果不这么做的话,当把示波器感测放置在正电压轨上时,我将会遇到一个接地竞争(或者被称为保险丝熔断)。图12显示的是开关节点(黄色)和最高GaN电流(紫色)。

图12:分流电阻器被插入时的LMG5200 GaN开关波形
通过放大图13,可以看出恢复电流已经消失(红色区域没有了)。由于感测电阻器增加的电感,还有一点点额外的振铃,不过没有恢复损耗或相关问题。你会发现开关和开关节点电容损耗依旧存在,但是GaN上不会出现导致基于硅MOSFET的转换器问题的反向恢复,这真让人松了一口气!

图13:GaN Qrr测量值
为了用一个硅MOSFET桥获得基线Qrr测量值,我掏出一把切割刀,在TPS40170EVM-597上为分流电阻器辟出了一个安全岛,并将这个分流电阻器放置其中。我使用的是一条50Ω SMA至BNC电缆,将信号传送到这个示波器(与50Ω的电阻值端接)。我串联了一个50Ω的电阻器,这样的话,我得到一半的信号值,不过没有振铃。注意在同时使用不同类型的探头时要进行失真调节!
需要注意的一点是,当分流电阻器位于顶端时,这个示波器被接地至正输入电压轨。这意味着电源正输出被接地(负电源接至降压转换器),任何其它测试设备,比如说负载测试器,一定不能使流经示波器连线的电源短路。图6显示的是经修改的评估模块 (EVM) 电路原理图。

图6:用于反向恢复测量的经修改的硅桥
图7显示了插入分流电阻器后的TPS40170 EVM。

图7:EVM探测技术
图8显示的是开关节点,以及300kHz, 24VIN, 5VOUT 和4AOUT 时的分流波形。

图8:硅桥开关波形
在图8中,黄色是软件节点,而紫色表示的是顶部FET漏极电流。电流平均值的“三角”波形与4A负载完美匹配 -> 20mV = 4A。
在图9中,针对TPS40170/硅MOSFET的高亮反向恢复电荷用红色显示(使用的是CSD185363A)。峰值恢复电流为18A左右 (90mV),据我估算,对于24V*300KHz*100nC = <720mW的损耗,Qrr大约小于100nC。需要注意的是,这个电流在“红色区域”内的部分在开关节点上升时流入负载,所以估算值也许会比Qrr高一点。

图9:硅桥反向恢复
想象一下这种情况!每3.3μs从输入电源汲取一个18A、12ns宽的电流脉冲。高di/dt将导致所有功率级中的环路电感产生出电压,并且有可能造成运行问题。幸运的是,TPS40170EVM-597具有一个可以缓解这些问题的极佳布局布线―实际上,这些问题并不会一直出现。
进入GaN,恢复在哪?
我使用了同样的技术来测量LMG5200 GaN(氮化镓)EVM。我首先当LMG5200EVM在负载为4A,将24V驱动为5V时,抓取了一个LMG5200EVM开关节点电压的参考示波器波形图。我使用的是一台安捷伦33220A,在300kHz时,将一个固定的21%左右的占空比驱动至LMG5200 PWM输入。请见图10,通道1显示的是开关节点波形。

图10:LMG5200 GaN开关波形
我将高/低驱动信号包括在内,作为参考(通道3&4)。这个“体二极管”传导比MOSFET的体二极管有更高的压降―我在这段时间看到的压降是2.5V左右,而不是大约0.6V。我抓取了这幅示波器波形图的原因在于,我将要在输入环路中增加一个会导致更多振铃的电阻器/电感。
图11显示的是在我将分流电阻器添加到上桥GaN器件的漏极后的变化。

图11:GaN开关波形探测技术
需要注意的是,我必须用一个电平位移电路(简单的PNP和电阻器)来将300kHz 21%占空函数发生器信号从“接地”(现在为24V电源的正值侧)电平位移至-24V上的PWM输入。如果不这么做的话,当把示波器感测放置在正电压轨上时,我将会遇到一个接地竞争(或者被称为保险丝熔断)。图12显示的是开关节点(黄色)和最高GaN电流(紫色)。

图12:分流电阻器被插入时的LMG5200 GaN开关波形
通过放大图13,可以看出恢复电流已经消失(红色区域没有了)。由于感测电阻器增加的电感,还有一点点额外的振铃,不过没有恢复损耗或相关问题。你会发现开关和开关节点电容损耗依旧存在,但是GaN上不会出现导致基于硅MOSFET的转换器问题的反向恢复,这真让人松了一口气!

图13:GaN Qrr测量值
电压 电流 MOSFET 二极管 电感 电容 电容器 电路 PIC 仿真 电阻 Vishay 示波器 安捷伦 PWM 相关文章:
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)
- 高效地驱动LED(04-23)
