如何利用开关稳压器为GSPS ADC 供电
时间:04-06
来源:互联网
点击:
快速傅立叶变换图
图4 和图5 分别显示了170 MHz 和785 MHz 输入时的单音FFT。 FFT 未显示出频谱性能的下降,因为1.25 V 域由单个DC-DC 转 换器供电。

图4. 170 MHz输入时的单音FFT,使用PDN #3。

图5. 785 MHz输入时的单音FFT,使用PDN #3。
开关杂散
除了噪声性能,由于采用了开关元件和磁性元件,因此还应当检查DC-DC 转换器部署的杂散成分。此时,采用谨慎仔细的布局技术以降低接地环路和接地反弹将会是有好处的。有很多资源可以协助测量开关电源噪声5,6。边带杂散出现在开关频率失调的两侧(本例中为1.2 MHz)。必须说明的是,图2 或图3 中的输出滤波器级是一个两级滤波器。这个两级滤波器是降低开关噪声 (纹波)的主要贡献因素,有助于改善ADC 噪声 (SNR) 性能。同 样的道理,这个两级滤波器还可协助降低开关杂散,并在输出 FFT 中体现出来。在图6 和图7 中,它们分别表现为170 MHz 和785 MHz。

图6. 170 MHz输入时的1.2 MHz 边带开关杂散。杂散水平 = -105 dBFS。

图7. 785 MHz输入时的1.2 MHz 边带开关杂散。杂散水平 = -94 dBFS。
通过了解PSRR(电源抑制比)或ADC 的电源域,可估算边带杂散水平。
DC-DC 转换器开关电路仿真
使用诸如ADIsimPE 等工具,可以仿真DC-DC 转换器输出端的 两级滤波器。图8 显示了ADIsimPE 原理图,用来仿真PDN 的 输出噪声和稳定性特征。ADIsimPE 是一款使用方便、功能强大 的工具,可帮助系统工程师设计、优化和分析电源网络。

图8. ADP2164 驱动1.25 V 域的ADIsimPE原理图。
图9 显示了第一级输出端的输出纹波以及电路第二级之后的滤 波输出,采用ADIsimPE 仿真。此处显示的纹波约为3 mV p-p。

图9. ADIsimPE仿真的一级和二级输出。
物料清单
表4 显示了AD9680 评估板使用的简化PDN(如图2 所示)物料 清单。通过使用图3 中的网络,系统设计人员可节省高达40%到 45%的BOM成本。BOM成本是在一个使用广泛的电子元件供应 商网站上通过计算千片订量价格估算的。

表4. 图2 中的PDN 物料清单
元件选型和布局
采用各种PDN 供电时的ADC 性能不仅取决于精心设计,还取决于元件选型以及它们在PCB 上的布局。在开关电源内产生的大电流跳变通常会导致强磁场,它可以耦合到板上其它电磁元件上,包括匹配网络中发现的电感以及用于耦合模拟和时钟信号的 变压器等。必须采用精心规划的电路板布局手段来防止这些磁场耦合到关键信号上。
电感选择
由于组成输出滤波器级的电感和电容输电量较大,因此需仔细进行选型。本例中,混合使用了屏蔽和非屏蔽电感。第一个滤波器级使用了一个屏蔽电感。本例中,第二级可以使用非屏蔽电感。 然而,建议两级均使用屏蔽电感,最大程度降低EMI 辐射。电 感同样选用具有充足饱和电流 (ISAT) 和直流电阻 (DCR) 裕量的 器件,确保它们不会饱和,或本身产生过多压降。
电容选择
建议使用X5R 或X7R 电容作为输出滤波器电容。电容还必须具有低ESR(等效串联电阻)。低ESR 有助于降低输出端的开关纹波。最大程度降低总ESR 和ESI(等效串联电感)的另一个诀窍是将电容并联连接。如图3 和表4 所示,第一个滤波器级使用 2 个22 μF 电容,而第二个滤波器级使用4 个22 μF 电容。电容 的电压额定值同样也是器件选型的重要依据。这是因为陶瓷电容 的电介质随直流偏置的增加而下降。这意味着额定值为6.3 V 的 22 μF 电容在4 V 直流偏置下最多可能下降50%。本例中,额定值为6.3 V 的电容用于1.25 V 电源。在输出端加入更多电容确实会略为增加BOM成本和电路板占位面积,但这样做可以保证 抑制可能会影响ADC 性能的开关噪声和纹波。
铁氧体磁珠选型
如图3 所示,铁氧体磁珠用于隔离各种域。铁氧体磁珠的选择同 样非常重要,因为如果铁氧体磁珠的DCR(直流电阻)高于所 需水平,则会导致域的电压无法达到最优。这种低电压会致使 ADC 性能(SNR 和SFDR)达不到最优。对于阻抗特性、最大直流搭载能力以及铁氧体磁珠的DCR 应高度重视。
PCB 布局考虑
为了最大程度减少开关稳压器和ADC 之间的干扰,DC-DC 转换 器及其开关元件应放置在远离任何磁性元件对ADC 造成干扰的 地方(比如前段匹配网络或时钟网络)。进行DC-DC 转换器布 局设计时,两级滤波器应当尽量靠近DC-DC 转换器,以便最大 程度降低环路电流。
图4 和图5 分别显示了170 MHz 和785 MHz 输入时的单音FFT。 FFT 未显示出频谱性能的下降,因为1.25 V 域由单个DC-DC 转 换器供电。

图4. 170 MHz输入时的单音FFT,使用PDN #3。

图5. 785 MHz输入时的单音FFT,使用PDN #3。
开关杂散
除了噪声性能,由于采用了开关元件和磁性元件,因此还应当检查DC-DC 转换器部署的杂散成分。此时,采用谨慎仔细的布局技术以降低接地环路和接地反弹将会是有好处的。有很多资源可以协助测量开关电源噪声5,6。边带杂散出现在开关频率失调的两侧(本例中为1.2 MHz)。必须说明的是,图2 或图3 中的输出滤波器级是一个两级滤波器。这个两级滤波器是降低开关噪声 (纹波)的主要贡献因素,有助于改善ADC 噪声 (SNR) 性能。同 样的道理,这个两级滤波器还可协助降低开关杂散,并在输出 FFT 中体现出来。在图6 和图7 中,它们分别表现为170 MHz 和785 MHz。

图6. 170 MHz输入时的1.2 MHz 边带开关杂散。杂散水平 = -105 dBFS。

图7. 785 MHz输入时的1.2 MHz 边带开关杂散。杂散水平 = -94 dBFS。
通过了解PSRR(电源抑制比)或ADC 的电源域,可估算边带杂散水平。
DC-DC 转换器开关电路仿真
使用诸如ADIsimPE 等工具,可以仿真DC-DC 转换器输出端的 两级滤波器。图8 显示了ADIsimPE 原理图,用来仿真PDN 的 输出噪声和稳定性特征。ADIsimPE 是一款使用方便、功能强大 的工具,可帮助系统工程师设计、优化和分析电源网络。

图8. ADP2164 驱动1.25 V 域的ADIsimPE原理图。
图9 显示了第一级输出端的输出纹波以及电路第二级之后的滤 波输出,采用ADIsimPE 仿真。此处显示的纹波约为3 mV p-p。

图9. ADIsimPE仿真的一级和二级输出。
物料清单
表4 显示了AD9680 评估板使用的简化PDN(如图2 所示)物料 清单。通过使用图3 中的网络,系统设计人员可节省高达40%到 45%的BOM成本。BOM成本是在一个使用广泛的电子元件供应 商网站上通过计算千片订量价格估算的。

表4. 图2 中的PDN 物料清单
元件选型和布局
采用各种PDN 供电时的ADC 性能不仅取决于精心设计,还取决于元件选型以及它们在PCB 上的布局。在开关电源内产生的大电流跳变通常会导致强磁场,它可以耦合到板上其它电磁元件上,包括匹配网络中发现的电感以及用于耦合模拟和时钟信号的 变压器等。必须采用精心规划的电路板布局手段来防止这些磁场耦合到关键信号上。
电感选择
由于组成输出滤波器级的电感和电容输电量较大,因此需仔细进行选型。本例中,混合使用了屏蔽和非屏蔽电感。第一个滤波器级使用了一个屏蔽电感。本例中,第二级可以使用非屏蔽电感。 然而,建议两级均使用屏蔽电感,最大程度降低EMI 辐射。电 感同样选用具有充足饱和电流 (ISAT) 和直流电阻 (DCR) 裕量的 器件,确保它们不会饱和,或本身产生过多压降。
电容选择
建议使用X5R 或X7R 电容作为输出滤波器电容。电容还必须具有低ESR(等效串联电阻)。低ESR 有助于降低输出端的开关纹波。最大程度降低总ESR 和ESI(等效串联电感)的另一个诀窍是将电容并联连接。如图3 和表4 所示,第一个滤波器级使用 2 个22 μF 电容,而第二个滤波器级使用4 个22 μF 电容。电容 的电压额定值同样也是器件选型的重要依据。这是因为陶瓷电容 的电介质随直流偏置的增加而下降。这意味着额定值为6.3 V 的 22 μF 电容在4 V 直流偏置下最多可能下降50%。本例中,额定值为6.3 V 的电容用于1.25 V 电源。在输出端加入更多电容确实会略为增加BOM成本和电路板占位面积,但这样做可以保证 抑制可能会影响ADC 性能的开关噪声和纹波。
铁氧体磁珠选型
如图3 所示,铁氧体磁珠用于隔离各种域。铁氧体磁珠的选择同 样非常重要,因为如果铁氧体磁珠的DCR(直流电阻)高于所 需水平,则会导致域的电压无法达到最优。这种低电压会致使 ADC 性能(SNR 和SFDR)达不到最优。对于阻抗特性、最大直流搭载能力以及铁氧体磁珠的DCR 应高度重视。
PCB 布局考虑
为了最大程度减少开关稳压器和ADC 之间的干扰,DC-DC 转换 器及其开关元件应放置在远离任何磁性元件对ADC 造成干扰的 地方(比如前段匹配网络或时钟网络)。进行DC-DC 转换器布 局设计时,两级滤波器应当尽量靠近DC-DC 转换器,以便最大 程度降低环路电流。
ADC CMOS LDO 开关电源 电压 电路 FPGA 连接器 总线 DAC 滤波器 仿真 ADI 电子 PCB 电流 电感 变压器 电容 电阻 相关文章:
- S3C2440A嵌入式手持终端电源管理系统设计(01-11)
- 基于CAN通信的电源监控系统的设计(04-06)
- 基于MSP430单片机的电源监控管理系统(04-20)
- 适用于全球交流电源的单节锂离子电池充电器设计(06-07)
- GPIB芯片TNT4882在多路程控电源中的应用(06-08)
- AD7656的原理及在继电保护产品中的应用(06-18)
