微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 射频工程师文库 > 一种形式新颖的12dBi线极化RFID天线的研究

一种形式新颖的12dBi线极化RFID天线的研究

时间:11-22 来源:21ic 点击:

区移动,因为振子面积的增大使容性逐渐增加。振子的粗细还会影响振子的最佳长度,因为电波在金属中行进的速度与真空中不尽相同,实际制作长度都 要在理论值上减去一个缩短系数,而振子越粗,振子的长度越校振子的理论长度为λ/4,这样最佳长度就会比λ/4小,而由电路理论可知,长度略短于λ/4 整数倍的导体呈电容性,所以此时单极振子呈容性,使天线的容性增加。在Smith圆图上使阻抗点逐渐向容性阻抗区移动,对整个天线的阻抗特性造成一定影 响。且振子臂宽约大,天线的Q值就越低,带宽愈大;

(3)组阵单元的间距:单元间距对增益和阻抗影响较大。从表1的仿真数据可看出随着间距的增大主瓣增益及后瓣都变大,即天线侧射方向上的能量增大。此天线波瓣的主波束指向与阵列轴线垂直的方向即为侧射阵。而阵列间距d有限制条件(为主波束的指向)
d<λ/1+|cosθ| (1)

当θ=π/2即侧射阵时应有d<λ。当θ=0即端射阵时应有d<λ/2随着间距的减小,天线从侧射阵逐渐向端射阵过渡,旁瓣增大、主瓣变小、 能量逐渐向阵列轴向方向辐射。从而导致天线增益降低。通过仿真还可知,随着间距的增大,阻抗点在Smith圆图上沿等电导圆顺时针移动,且电阻逐渐增大;

(4)引向器的长度:引向器上感应电流的幅度与相位取决于其本身的自阻抗和与有源振子间的互阻抗。互阻抗随振子长度变化不明显。而自阻抗主要取决于振子本 身的长度。当导体的长度略长于λ/4的整数倍时成电感性,略短于λ/4整数倍时成电容性。在表2的仿真数据中,第一引向器长度在12.6~13.2 mm时为电感性,为13.4 mm时呈电容性。第二引向器呈容性。所以通过改变两引向器的长度可改变其各自阻抗的性质,使其共同影响天线的阻抗。从仿真数据可看出,第二引向器长度的大 小比起第一引向器在抑制后向辐射方面有更显著的影响。第二引向器的长度较短时,后向辐射较小,因为此时使引向器和单极振子在主方向上产生电磁场相加,从而 起到增强增益抑制后瓣的效果。


2 优化后的仿真结果及分析
通过仿真优化得到各部分的最优尺寸为:单极振子为94 mm,第一引向器为130 mm,第二引向器为140 mm;第一引向器与单极振子间距为40 mm,第二引向器与单极振子间距为104 mm,组阵单元的间距为360 mm,抱杆与单极振子的间距为90mm。并联25 pF电容进行阻抗匹配,使天线阻抗在50 Ω左右。通过仿真主辐射方向增益为12.2 dBi在840~845 MHz的频带内,驻波比都<1.2,阻抗得到良好匹配约为50 Ω,仿真结果如图3~图6所示。

3 实测结果

4 结束语
文中设计了一种形式新颖的12 dBi线极化天线。实测的驻波比在工作频带内<1.2,阻抗为50 Ω,阻抗得到良好匹配。通过对比法(与标准天线进行对比)可得实际增益>12 dBi。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top