基于运算放大器驱动PIN二极管替代方案
时间:02-25
来源:互联网
点击:
(R5和R9)与VTTL输入以无源方式合并,所产生的电压(VRD)出现在U1B的同相输入端。U1B输出电压可以利用公式8计算。
(8)
其中:
(9)
负基准电压也被馈送至放大器U1A,在其中与TTL输入合并,所得输出电压V2可以利用公式10计算。
(10)
这些放大器采用电流反馈架构,因此必须注意反馈电阻的选择,反馈电阻对于放大器的稳定性和频率响应有着重要作用。对于本应用,反馈电阻设为294Ω,这是数据手册所推选的值。输出电压V1和V2分别可以用公式8和公式10表示。输出尖峰电流量可以利用公式3和电容C5、C6上的电压确定。设置PIN二极管导通电阻的稳态电流由R11与R12上的电压差确定,并取决于PIN二极管曲线和系统要求。
对于本应用,RF开关负载为MASW210B-1硅PIN二极管单刀双掷(SPDT)开关,用于微波下变频器的前端(见图11)。
以上三例说明,运算放大器可以创造性地用作传统放大器的替代方案,其性能与PIN二极管专用驱动IC相当。此外,运算放大器可以提供增益调整和输入控制功能,而且当使用内置电荷泵的运算放大器时,无须负电源,这就提高了PIN二极管的驱动器和其他电路的设计灵活性。运算放大器易于使用和配置,可以相对轻松地解决复杂问题。
来源:电子工程网
(8)
其中:
(9)
负基准电压也被馈送至放大器U1A,在其中与TTL输入合并,所得输出电压V2可以利用公式10计算。
(10)
这些放大器采用电流反馈架构,因此必须注意反馈电阻的选择,反馈电阻对于放大器的稳定性和频率响应有着重要作用。对于本应用,反馈电阻设为294Ω,这是数据手册所推选的值。输出电压V1和V2分别可以用公式8和公式10表示。输出尖峰电流量可以利用公式3和电容C5、C6上的电压确定。设置PIN二极管导通电阻的稳态电流由R11与R12上的电压差确定,并取决于PIN二极管曲线和系统要求。
对于本应用,RF开关负载为MASW210B-1硅PIN二极管单刀双掷(SPDT)开关,用于微波下变频器的前端(见图11)。
图11 下变频器功能框图
开关输出波形和TTL输入信号如图12所示。请注意,上升沿和下降沿非常陡峭。由于开关的开关时间要求相对较慢(约为50ns),因此本应用没有使用尖峰电容C5和C6。设置稳态二极管电流的电阻R11和R12均为330Ω。
图12 显示RF开关速度的波形
图13显示了下变频器前端的频谱响应;开关SW1位于固定位置,以消除插入损耗。请注意,图中不存在谐波或边带,充分表明没有明显的100 kHz开关伪像从ADA4858-3片内电荷泵散出,这是在此类应用中使用这些器件的重要考虑因素。
图13 下变频器的频谱响应
结论以上三例说明,运算放大器可以创造性地用作传统放大器的替代方案,其性能与PIN二极管专用驱动IC相当。此外,运算放大器可以提供增益调整和输入控制功能,而且当使用内置电荷泵的运算放大器时,无须负电源,这就提高了PIN二极管的驱动器和其他电路的设计灵活性。运算放大器易于使用和配置,可以相对轻松地解决复杂问题。
来源:电子工程网
电路 二极管 电流 电压 放大器 运算放大器 电阻 半导体 电子 电容 滤波器 电感 PCB 集成电路 ADC 相关文章:
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)