低电压故障保护
时间:09-15
来源:互联网
点击:
在现有设计中,大多数系统工作于标准电源电压(单极性3.3V或5V,或双极性±3.3V或±5V),这个电压通常也是板上的最高电压。
在实际使用中,电路板的输入端子可能会暴露于比电源电压更高的电压之下,同时,电路板电源被切断后,输入端子上的电压有可能仍然存在。受这种过压影响的第一个元件常常是多路复用器或开关,这就要求为开关元件和下游电路提供适当的保护。
模拟开关内的通道元件通常包括一个或更多的MOSFET,同时还包含有寄生钳位二极管(钳位至电源电压),用于ESD保护。图1显示了一个闭合的模拟开关的等效电路图。只要V+和V-存在,并且输入电压不超过:电源电压 + 钳位二极管的正向偏压(典型0.6V),二极管就处于反向偏置,没有电流通过。
不正确的电源顺序会导致过压故障,许多开关要求首先接通最大的“正”电压,最后才是最低的“负”电压。应当注意的是,当电源关断时有输入电压或输入电压超出了电源电压时,都会有电流流过钳位二极管。这些二极管仅有数毫瓦的功率容量(取决于IC的半导体工艺),当因功率耗散而产生的热量超过一定容限时将会永久性地损坏开关。
更低一些的电流还可能会导致锁定 - 一种导致开关功能失效、并从电源吸取过量电流的故障状态。大多数情况下你只需移去开关上的所有电压便可消除锁定,而不会损坏开关,但在此之前整个电路板将不能正常工作。
图1. 闭合开关的等效电路
1 外部保护
防止模拟开关进入锁定状态的一个简单方法是增加一个大电流肖特基二极管(图2),这个二极管具有较低的正向偏压(最大0.3V)。如果输入电压超过了电源电压,肖特基的低偏压可保证没有电流流过钳位二极管,因为后者的典型正向偏压为0.6V。
图2. 利用外部肖特基二极管防止闭锁
不过,这种无锁定电路仍然存在有缺陷,不仅仅是因为两只保护二极管所带来的额外成本。肖特基二极管会让超过电源电压0.3V以上的任何电压通过。对于连接到V+、V-的器件,在电源没有接通(V+和V-位于地电平)并且输入电压始终低于电源线上连接的每个器件的极限值时不存在问题。
但是,这个电路并不能提供过压保护。举例来讲,如果V+ = 5V,开关输入端的故障电压为8V,这时V+就会被上拉到接近7.7V - 这对于V+上连接的大多数数字器件来讲过高。即使当V+上只有开关本身,并且开关能够承受这样的故障电压,这样的高电压还是会通过闭合的开关危及到下游器件。此外,具有多路输入的开关需要在每个输入端连接一个肖特基二极管到V+,这样会增加很多成本和板上空间。
图3电路提供了一个比较好的过压保护方案,适合于那些在开关未接通电源之前永远不会有输入电压的应用。一个常规的硅二极管的正向偏压VD一般为0.7V,这样在选择齐纳管击穿电压Vz1时必须满足VD + Vz1 < V+。对于负向保护和Vz2也是一样:|D + Vz2| < |V-|。二极管(齐纳管和标准硅二极管)的最高额定电压必须按照可能的最高故障电压来选。
图3. 利用外部二极管提供过压保护
对于一个持续的过压故障(而非毛刺),须在地和齐纳二极管之间连接一个电阻来限制通过二极管的电流。这种保护的最大缺点是限制了开关的输入电压范围。由于二极管的偏压有很大差异,二极管网络的最小/最大限也会有很大的差异。如果按最差的极限情况来设计网络,就有可能在电压比电源电压还低很多的情况下二极管就开始导通,这样就使开关丧失了满摆幅特性。
通过在输入通道中串联电阻(k级)来限制流过开关中钳位二极管的电流也可以起到某种程度的保护。不过,过电压仍然可能威胁到开关下游的器件。串联电阻显著增加了开管导通时的通道电阻。这个电阻随着温度的改变会给信号带来误差,因为来自于开关的泄漏电流会流过这个增大了的导通电阻。
在实际使用中,电路板的输入端子可能会暴露于比电源电压更高的电压之下,同时,电路板电源被切断后,输入端子上的电压有可能仍然存在。受这种过压影响的第一个元件常常是多路复用器或开关,这就要求为开关元件和下游电路提供适当的保护。
模拟开关内的通道元件通常包括一个或更多的MOSFET,同时还包含有寄生钳位二极管(钳位至电源电压),用于ESD保护。图1显示了一个闭合的模拟开关的等效电路图。只要V+和V-存在,并且输入电压不超过:电源电压 + 钳位二极管的正向偏压(典型0.6V),二极管就处于反向偏置,没有电流通过。
不正确的电源顺序会导致过压故障,许多开关要求首先接通最大的“正”电压,最后才是最低的“负”电压。应当注意的是,当电源关断时有输入电压或输入电压超出了电源电压时,都会有电流流过钳位二极管。这些二极管仅有数毫瓦的功率容量(取决于IC的半导体工艺),当因功率耗散而产生的热量超过一定容限时将会永久性地损坏开关。
更低一些的电流还可能会导致锁定 - 一种导致开关功能失效、并从电源吸取过量电流的故障状态。大多数情况下你只需移去开关上的所有电压便可消除锁定,而不会损坏开关,但在此之前整个电路板将不能正常工作。
图1. 闭合开关的等效电路
1 外部保护
防止模拟开关进入锁定状态的一个简单方法是增加一个大电流肖特基二极管(图2),这个二极管具有较低的正向偏压(最大0.3V)。如果输入电压超过了电源电压,肖特基的低偏压可保证没有电流流过钳位二极管,因为后者的典型正向偏压为0.6V。
图2. 利用外部肖特基二极管防止闭锁
不过,这种无锁定电路仍然存在有缺陷,不仅仅是因为两只保护二极管所带来的额外成本。肖特基二极管会让超过电源电压0.3V以上的任何电压通过。对于连接到V+、V-的器件,在电源没有接通(V+和V-位于地电平)并且输入电压始终低于电源线上连接的每个器件的极限值时不存在问题。
但是,这个电路并不能提供过压保护。举例来讲,如果V+ = 5V,开关输入端的故障电压为8V,这时V+就会被上拉到接近7.7V - 这对于V+上连接的大多数数字器件来讲过高。即使当V+上只有开关本身,并且开关能够承受这样的故障电压,这样的高电压还是会通过闭合的开关危及到下游器件。此外,具有多路输入的开关需要在每个输入端连接一个肖特基二极管到V+,这样会增加很多成本和板上空间。
图3电路提供了一个比较好的过压保护方案,适合于那些在开关未接通电源之前永远不会有输入电压的应用。一个常规的硅二极管的正向偏压VD一般为0.7V,这样在选择齐纳管击穿电压Vz1时必须满足VD + Vz1 < V+。对于负向保护和Vz2也是一样:|D + Vz2| < |V-|。二极管(齐纳管和标准硅二极管)的最高额定电压必须按照可能的最高故障电压来选。
图3. 利用外部二极管提供过压保护
对于一个持续的过压故障(而非毛刺),须在地和齐纳二极管之间连接一个电阻来限制通过二极管的电流。这种保护的最大缺点是限制了开关的输入电压范围。由于二极管的偏压有很大差异,二极管网络的最小/最大限也会有很大的差异。如果按最差的极限情况来设计网络,就有可能在电压比电源电压还低很多的情况下二极管就开始导通,这样就使开关丧失了满摆幅特性。
通过在输入通道中串联电阻(k级)来限制流过开关中钳位二极管的电流也可以起到某种程度的保护。不过,过电压仍然可能威胁到开关下游的器件。串联电阻显著增加了开管导通时的通道电阻。这个电阻随着温度的改变会给信号带来误差,因为来自于开关的泄漏电流会流过这个增大了的导通电阻。
电压 电路 MOSFET 二极管 电路图 电流 半导体 电阻 比较器 电容 总线 CMOS 相关文章:
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)
- 高效地驱动LED(04-23)