微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 低电压故障保护

低电压故障保护

时间:09-15 来源:互联网 点击:
2 内部保护

在模拟开关内部集成故障保护的方法首先被用于某种类型的多路复用器,它的通道元件包含三个串联的MOSFET,依次为n沟道p沟道n沟道。这种结构可以为每个信号通道提供±100V的保护(图4)。随着输入电压接近并超过电源电压,复用器的导通电阻迅速增大,限制了输入电流,保护了复用器(以及复用器前后的器件)。对于故障电流的限制同时也阻断了故障向其他通道的耦合。


                                                             图4. 早期故障保护开关的导通电阻随信号电压的变化

串联MOSFET的方法也可在无电源的情况下提供保护。早期的器件,如MAX388或HI509A,只工作在±4.5V至±18V,有着较大的封装、较高的导通电阻(最小350,最高可至3.5k),并且只能通过比电源电压低大约2V的输入信号电压。

对于工作在9V至36V或±4. 5至±20V范围的器件,解决这些问题的第一步就是开发一种新的开关结构,类似于下面即将谈到的低电压故障保护方案。较之三FET串联技术,新方案最突出的优点是允许满摆幅工作和更低的导通电阻。内部电路检测到故障时自动切断开关,阻止故障穿过开关或复用器到达其他电路。

故障状态下,由于只有很小的漏电流流入开关或复用器,开关不会因功率耗散而损坏。和早期的3-FET方案相同,基于这种新的工艺和结构的开关/复用器会在断电情况下返回高阻抗状态,因而消除了断电情况下的故障问题。这种器件(包括MAX4511开关和MAX4508复用器系列)适合于需要±40V故障保护的高电压系统,但不适合于常见的3V和5V系统。这些器件在低电压范围内没有规定特性,它们在5V电源下的Rds(on)会高达数千欧。

3 低电压故障保护

故障保护开关家族中的最新成员被优化工作于单极性3.3V或5V电源,或者是双极性(±3.3V或±5V电源。它们不需要外部保护,具有最多30 (±5V电源)或100 (+3V电源)的低导通电阻。

如图5所示,这些开关由一个n沟道FET (N1)和一个p沟道FET (P1)并联构成低阻抗输入到输出信号通道。只要输入信号位于电源范围以内,或不超出电源150mV,就可通过开关到达COM端,因此允许开关满摆幅工作。


                                                                  图5. 低电压故障保护开关的内部框图

开关内部的两个比较器用于监视输入电压,它们将输入电压与电源电压V+和V-进行比较。当NO (常开)端或NC (常闭)端上的信号位于V+和V-之间时,开关正常工作。当信号电压超出电源约150mV时(故障情况),输出电压(COM)被限制在电源电压 - 保持相同极性且输入为高阻。这是在故障比较器的控制下实现的,它在故障情况下关闭了N1和P1。故障比较器同时还按照以下规则控制钳位FET (N2和P2):如果开关闭合时出现了负极性故障,接通N2连接COM到V-。如果开关闭合时出现了正极性故障,则接通P2连接COM到V+。如果开关开路时出现了故障,则输出呈现高阻。

故障期间,输入始终呈现为高阻,与开关状态及负载阻抗无关。最高输入故障电压受限于开关元件的极限值,MAX4711系列为±12V。举例来讲,如果MAX4711工作于5V电源,则在正端可承受的最高故障电压为+12V,而在负端为-7V (5V + |-7V| = 12V)。该器件能够在没有电源电压的情况下为输入引脚(NO和NC)提供故障保护,甚至断电时提供更可靠的保护,在此情况下,故障电压可接近±12V。

逻辑输入端(IN)的过压保护正向最高达(V+)+12V,但负向仅能超出负电源一个二极管压降。输出端(COM)没有保护,正如上面所提到的,COM电压不应超出任何一端电源电压0.3V以上。

图6显示了一个闭合的、具有故障保护的开关在经历两个方向的输入故障电压期间的输出情况。通常情况下,在输入电压比V+ (或V-)高出150mV约200ns后,输出(COM)就会等于正(或负)电源电压减去一个FET的电压降。当输入电压返回到电源范围以内后,需要再经过一个700ns (典型值)的延迟,输出方可恢复并跟随输入。这个延迟和COM输出端的电阻和电容有关,而和故障电压的幅度无关。COM端的电阻和电容越大,恢复时间就越长。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top