微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 汽车电子 > 安森美半导体首创智能无源传感器用于汽车无线感测应用

安森美半导体首创智能无源传感器用于汽车无线感测应用

时间:11-23 来源:互联网 点击:
传感器是汽车电子控制系统的关键元器件,高性能的传感器对提升汽车主动安全、燃油经济性及舒适性有着重大意义。安森美半导体作为全球汽车半导体行业翘楚,凭借广博的专知和宽广的产品及方案阵容,持续推动汽车领域的高能效创新,近期推出首创的超高频射频识别(RFID)传感器,该器件将一个称为Magnus的智能传感器IC及可印制的天线相结合,无需外接电源,能无线感测温度、湿度、压力和距离,用于汽车胎压监测、座椅压力检测、整车质量控制漏水检测及液位检测可降低成本,提升能效和可靠性,并为无限量的汽车及其它低成本感测应用开启了大门。

现有无线传感器与智能无源传感器的比较

当前市面上的无线传感器大都由收发器、额外的外围元件、刺激探测器及微控制器等多个IC组成,由电池供电,需要使用专用微控制器在每一节点对感测到的数据进行本地后处理。这类方案由于所需元件数较多,且后期使用需要维护,导致成本较高,目标市场有限。

智能无源传感器则将多个传感器和功能集成到单个芯片(<0.8 mm2)上,无需电池、刺激探测器和在感测节点的微控制器,感测数据将被发送到远程中央处理单元进行后处理。这种创新方案的优势在于集成度高,元件数较少,单个处理单元可为多个传感器工作,无需后期维护,较传统的无线传感器降低成本和能耗,且市场扩展性极高。

智能无源传感器的工作原理

智能无源传感器的核心是MagnusR-S IC和一个远程无线收发器。MagnusR-S是一个系统单芯片,集成了能量收集引擎、感测湿度或压力的ChameleonTM传感器引擎、温度传感器、感测接收到的能源的距离传感器及存储独特ID的非易失性存储器;远程无线收发器用于收集感测信息并对其进行后处理,每秒能收集来自100个传感器的数据。


图1.  智能无源传感器架构及工作原理

由MagnusR-S连接到天线而形成的智能无源传感器是完全可嵌入的。天线作为MagnusR-S和远程无线收发器之间的通信介质,和根据环境改变天线阻抗的刺激探测器。ChameleonTM传感器引擎用于检测由周围环境变化引起的天线阻抗的变化,将感测到的数据数字化为9位数字代码以便进行处理。距离传感器检测芯片内部可提供的功率,以确定与无线收发器相关的传感器的位置,它将距离信息数字化为5位数字代码。温度传感器的检测精度在0 oc-50 oc为±0.3 oc,在-40 oc-85 oc为±1 oc。感测通过对存储在非易失性存储器中校准的已知状态进行相关测量而实现,参考数据可随时被检索用于相关感测。远程无线收发器收集感测数据并对其进行后处理,减轻每一单个传感器本地后处理数据的负担,使得单个无线收发器能服务于数以千计的传感器。

汽车智能无源传感器

因MagnusR-S IC采用定制的天线和封装,高度灵活性使得智能无源传感器能跨越汽车、医疗、工业、物联网等多个应用领域。在汽车领域,该方案主要用于胎压监测系统、座椅压力检测、整车质量控制漏水检测及液位检测。

胎压监测系统

胎压监测系统用作实时自动监测行车过程中的轮胎气压,在出现胎压不足或过高的危险征兆时及时报警,提升行车安全性和燃油经济性,延长轮胎使用时间,减少悬挂系统的磨损。市场上当前用于胎压监测系统的多芯片传感器,被安装在每一轮圈和阀杆,使用电池供电,能耗高于250 uW,需要加速计以避免轮胎未移动时将电池耗尽,在轮胎旋转期间需重新编程以定位,成本高于30美元。

最初使用智能无源传感器的胎压监测系统由一个双天线模块和一个挠度随压力变化的钢膜组成:单极子利用阀杆作为通信的单极子天线,环形天线收集电能以驱动传感器;钢膜是真空填充球的一部分,和PCB一起被封装在一个塑料体内。其工作原理的核心是:电容式传感器检测由钢膜挠度变化引起的电容变化。

而安森美半导体的智能无源传感器是单芯片方案,由MagnusR供电而无需电池,能耗低于15 uW。智能无源传感器标签置于每一轮胎,独特的RFID提供自动轮胎定位,无论当轮胎旋转还是静止时都可感测轮胎压力和温度信息,并将信息数字化为9位代码。该方案集成含前后两条天线的软件无线电模块到现成的电子控制单元,可用于汽车中的多个传感器标签。这智能无源传感器方案用于胎压监测系统的成本远远低于30美元。


图2. 智能无源传感器用于胎压监测系统

传感器标签的识别是通过利用每一传感器的两个非易失性内存插槽,即标签识别号(TID)和电子产品代码(EPC)来实现。TID内存插槽提供无法擦除的唯一传感器识别号,并在生产过程中以硅级别分配给每一传感器。TID包含制造代码(由RFID全球管理机构GS1分配)和传感器类型、制造时间及地点信息。EPC内存插槽为用户定义的分配给传感器标签的标号提供最少96位可写内存。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top