瞬态电压抑制器(TVS):保护汽车电子产品
功率等级
TVS的功率等级是在一定测试或应用条件下吸收浪涌的能力。10μs/1000 μs脉冲波形(Bellcore 1089标准)的行业标准测试条件如图1所示。这个测试条件不同于TVS瞬态电压吸收能力的测试条件,吸收能力的测试采用8 μs/20 μs脉冲波形,如图2所示。
图1:TVS的测试波形(Bellcore 1089) 图2:TVS的波形击穿电压(VBR)击穿电压是器件进入雪崩击穿的电压,采用数据表上的特定电流条件下进行测试。
最大击穿电压(VC:钳位电压)在一定的峰值脉冲电流等级下,TVS上会出现钳位电压。TVS的击穿电压是在非常低的电流下测得的,例如1mA或10mA,不同于应用条件下的实际雪崩电压。因此,半导体制造商标注的典型或最大击穿电压对应的是大电流。
关态工作电压(VWM):工作时的关态反向电压
关态电压指的是 TVS在未击穿情况下所能承受的最高电压,是电路中在正常情况下不工作的保护器件的重要参数。在汽车里面,一些汽车电子产品的法规是根据“跳启动保护”的情况制定的。这种情况下,要求为12V的电子设备提供10分钟的23VDC电源,用36VDC电源给24VDC电子设备供电10分钟,不会损坏电路或引起误操作。因此,关态电压是用在汽车电子产品中的TVS的关键参数。
汽车电源线(甩负荷)的初次保护电子控制单元、传感器和信息娱乐系统等汽车电子设备是连到电源在线的。这些电子产品的电源是电池和发电机,这两种电源的输出电压不稳定,易受温度、工作状态和其他条件的影响。此外,使用电磁线圈负载的汽车系统,例如燃油喷嘴、阀门、电动机,电子和混合控制器,会把ESD、尖峰噪声和其他类型的瞬态和浪涌电压引入到电源和信号在线。
什么是甩负荷?当引擎开始工作,电池从电源在线断开,发电机继续为汽车的电源线输出电流,这是产生浪涌电压的最糟糕的情况。这种情况就是所说的“甩负荷”,大多数汽车制造商和行业协会都会针对这种甩负荷状态,制定最高电压、线路阻抗,和这种甩负荷状态的持续时间,如图5所示。甩负荷的源阻抗高于正常条件下瞬态测试时的阻抗,因为电池已经断开,只有发电机在向外输出电能,这时发电机的内部线圈的作用就象一个限流电阻。
在甩负荷过程中,需要对发电机的动态行为进行总体考虑:
a) 在甩负荷情况下,发电机的内部电阻主要是发电机的转速和激磁电流的函数。可以通过下面的关系式计算处甩负荷测试加上发电机的内部电阻RiRi=( 10 X UnomX Nact) / ( 0.8 X IratedX 12,000min-1)这里Unom 是发电机的额定电压;Nact 是转速为6000转/分钟的发电机的额定电流(ISO 8854中给出的)Irated是在相互作用的几分钟里实际的发电机转速。
两个大家熟知的试验模拟了这个条件:美国的ISO-7637-2 Pulse 5,和日本用于14V动力总成的JASO A-1和用于27V动力总成的JASO D-1。在这部分,我们会概括在14V动力总成中用于甩负荷的TVS应用。甩负荷试验的标准和结果美国的ISO-7637-2 Pulse 5和日本的JASO A-1针对14V动力总成的模拟条件如下表。
一些汽车制造商在ISO-7637-2 Pulse 5基础上,针对甩负荷测试采用了不同的条件。可以用下面的等式估算甩负荷TVS的峰值钳位电流。峰值钳位电流的计算公式IPP= (Vin– VC) ⁄ RiIPP: 峰值钳位电流Vin: 输入电压VC: 钳位电压Ri: 线路阻抗
在87V 的ISO-7637-2测试对13.5V电池,0.75Ω Ri和400ms脉冲宽度条件下,Vishay的SM5S24A的电流和电压波形,如图7A所示。
图7A:在ISO 7637-2测试中SM5S24A的钳位电压和电流图7B:在ISO7637-2测试中甩负荷TVS失效情况下的钳位电压和电流在图7B中,在87V的ISO-7637-2测试对13.5V电池,0.5Ω Ri和400ms脉冲宽度条件下,甩负荷TVS的钳位电压和电流失效,因为器件耗散过大。钳位电压降到接近0V,流过器件的电流达到线路阻抗随能允许的最大值。在ISO-7637-2pulse 5规定的13.5V Vbatt和400ms脉冲宽度的测试条件下,Vishay甩负荷TVS的最大钳位能力如图7C所示。为防止出现图7B中的失效情况,要非常重视TVS的最大等级。
针对负电压瞬态和反向电源电压的保护
用于汽车电子初次保护的甩负荷TVS有两类:外延型和非外延型。在反向偏置模式下,这两个产品组有相近的工作击
传感器 电子 电压 汽车电子 电流 半导体 电路 电动机 电阻 Vishay CMOS MOSFET EMC 相关文章:
- 另类传感器观念:汽车传感器(2)(11-30)
- 满足汽车高温应用环境要求的传感器接口IC(01-10)
- 构建可靠的容性传感器汽车开关和控制接口(01-06)
- 汽车HVAC系统中的传感器(02-23)
- 新技术、新应用让传感器深入汽车电子设备的各个角落(05-11)
- 汽油发动机的传感器全面介绍(05-19)