微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 汽车电子 > 无传感器电动车窗防夹控制模块的研制

无传感器电动车窗防夹控制模块的研制

时间:11-30 来源:互联网 点击:
3 车窗控制模块的软件设计

3.1 车窗的启动和停止

启动是指直流电动机由静止达到稳定转速的过程。若直接启动(即直接合闸),给电动机加上U额,则启动电流Ia=(U-0)/Ra=U/Ra很大,会带来强烈的火花现象,电流正比于转矩,过大的转矩带来很大的冲击,电压波动影响供电的稳定性。在本系统设计的时候,电机启动采取PWM的方式进行。采用2 kHz的频率,分为10段,占空比从0%逐步上升到100%。每段10个脉冲,共5 ms,10段启动时间一共50 ms。在实验中证实,采取这种启动方式,启动比较平稳,启动快速性较好。在车窗启动的这段时间里,电机的电流变化比较大,无法通过监测电流的变化来实现防夹功能,同时这段时间很短,因此在启动的这段时间内应避免实现防夹功能。

而在停止的时候,不是监测到电机堵转才停止,而是监测到电机的电流超过了其正常工作电流的一定幅度就停止电机,在本系统实验中,这个界限电流定义为11 A。上升过程电机的电流变化见图3,电机的电流呈现逐步增大的趋势,连续变化,下降过程电机电流的变化见图4所示,电流呈现逐步下降的趋势,连续变化。



3.2 防夹算法的实现

为了实现电动玻璃的防夹功能,设计研制的车窗控制模块必须包括两种功能:

(1)必须能够判断是否遇到障碍物;

(2)判断遇到障碍后必须能够判断玻璃是在上升还是已经上升到顶部。

如果车窗控制模块判断玻璃在上升过程中遇到障碍物,则控制模块发出指令,电机反转,车窗下降一段距离后停止;如果车窗控制模块判断玻璃已经上升到最顶端,则控制模块发出指令令电机停止,车窗关闭。

车窗上升到顶部和车窗上升过程中遇到阻力直流电机的电流变化情况见图3,图5。



通过对比图3,图5发现,在上升到最顶部和上升过程中遇到阻力两种情况下,电机的电流都从正常工作电流急剧增大,因此可以通过监测电机的电流幅值来判断是否遇到障碍。但是电机的瞬时电流变化可能会出现峰值,因此幅值必须是一段时间内的电流平均值。当电流平均值A≥A障碍(A正常<A障碍<A堵转)时,认为玻璃上升过程中遇到障碍或是上升到最顶端。可以通过调节A障碍的大小来调节上升防夹力的大小。

仅仅通过幅值这一个判据无法区分车窗遇到障碍是在上升过程还是到了最顶端,通过对比图3,图5发现,在车窗上升过程中遇到阻力和车窗上升到最顶端两种情况下电机电流增大的快慢是不一样的,车窗上升过程中遇到阻力情况下要比车窗上升到最顶端情况下电流变大要快。因此可以通过求得电流变化的斜率来区分两种情况。当f≥f阻力时,车窗上升过程中遇到阻力;当0<f<f阻力时,车窗上升到最顶端。

此外,还可以增加一个辅助的判据来区分车窗遇到障碍是在上升过程还是到了最顶端。通过对比图3,图5发现,从车窗开始运行在车窗上升过程中遇到阻力和车窗上升到最顶端两种情况下,牟窗的运行时间是不一样的。当T>T顶端时,车窗上升到最顶端;当T≤T顶端时,车窗上升过程中遇到阻力。但是相同车型的不同车窗,由于安装的不能完全相同,因此T顶端会有细微的差别,可以通过实验测出一个初始T顶端,把每次车窗上升到最顶端的时间记录下来,存储到E2PROM中,这些数据作为调整T顶端的依据,这样参数T顶端具有了自适应性。

这样通过三组判据来判断区分两种情况。当(A≥A障碍)&&(f≥f阻力)&&(T≤T顶端)时,车窗上升过程中遇到阻力;当(A≥A障碍)&&(0<f<f阻力)&&(T>T顶端)时,车窗上升到最顶端。采用三组判据增加了判断的准确性,降低了误判率。采用这三种判据,在实车实验中良好地实现了电动车窗的防夹功能,在上升过程中遇到阻力车窗则下降一段,电流变化如图5所示。

4 结 语

PTC单片机PIC18F2480片内集成了很多功能,支持CAN通信和串行通信,可以在线编程。智能功率驱动器MC33486不但具有宽范围电压输入,大容量,而且还有电流镜像功能。这两种元器件结合起来,通过监测车窗电机的电流来监测车窗遇到的障碍情况,在现有的不具有防夹功能的电动车窗的基础上,不需要添加任何传感器,很容易就可以实现电动车窗的防夹功能。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top