厢式半挂车空气悬架系统的Simulink仿真分析
时间:11-18
来源:互联网
点击:
(二)结果对比
输入满载行驶时厢式半挂车的结构性能参数以及路面参数,通过Scope和Display模块可以看出该车各个自由度处的垂直加速度时间历程与均方根值。仿真选用与试验一致的参数,如表2所示。其中α为常数,是所选路面的空间频率;ρ为常数;v为车速。
表2 路面参数
以C级路面下实车测试与仿真计算的加速度均方根值为例,给出结果如表3所示。
表3 随机路面加速度输出响应
从表3结果来看,仿真模型响应计算结果与实车试验结果比较接近,二者在误差允许范围内是一致的,说明该模型作为初步的模拟和预估是可行的,应由此可见路面的模拟也是切实有效的。产生误差的重要原因是本模型自由度较少且空气弹簧的非线性阻尼和刚度的影响较大,同时路面使用情况较为复杂,不完全符合等级要求。
五、结论
建立基于系统仿真软件Matlab/Simulink/Dsp的厢式半挂车实时道路仿真模型,通过实车试验,验证了模型的可靠性。为空气悬架等部件在半挂车设计与匹配中的应用提供了有利的工具,并可作为脉冲输入试验等其他动力学试验的仿真使用。
通过计算结果分析,设计者可以明确悬架参数对于厢式半挂车动态响应的影响,改进设计系统中的关键参数,以获得更好的动态性能。利用可靠的仿真模型,重现相同条件下的仿真试验,可以检验并优化空气悬架等部件参数,从而缩短开发设计周期,节约成本。
输入满载行驶时厢式半挂车的结构性能参数以及路面参数,通过Scope和Display模块可以看出该车各个自由度处的垂直加速度时间历程与均方根值。仿真选用与试验一致的参数,如表2所示。其中α为常数,是所选路面的空间频率;ρ为常数;v为车速。
表2 路面参数
以C级路面下实车测试与仿真计算的加速度均方根值为例,给出结果如表3所示。
表3 随机路面加速度输出响应
从表3结果来看,仿真模型响应计算结果与实车试验结果比较接近,二者在误差允许范围内是一致的,说明该模型作为初步的模拟和预估是可行的,应由此可见路面的模拟也是切实有效的。产生误差的重要原因是本模型自由度较少且空气弹簧的非线性阻尼和刚度的影响较大,同时路面使用情况较为复杂,不完全符合等级要求。
五、结论
建立基于系统仿真软件Matlab/Simulink/Dsp的厢式半挂车实时道路仿真模型,通过实车试验,验证了模型的可靠性。为空气悬架等部件在半挂车设计与匹配中的应用提供了有利的工具,并可作为脉冲输入试验等其他动力学试验的仿真使用。
通过计算结果分析,设计者可以明确悬架参数对于厢式半挂车动态响应的影响,改进设计系统中的关键参数,以获得更好的动态性能。利用可靠的仿真模型,重现相同条件下的仿真试验,可以检验并优化空气悬架等部件参数,从而缩短开发设计周期,节约成本。
- 车辆导航定位仿真试验系统研究(05-26)
- 柴油发电机组转速控制半物理仿真(01-08)
- dSPACE实时仿真系统介绍(05-11)
- 基于DSP的汽车内噪声主动控制系统的设计(06-09)
- Multisim仿真软件在发动机电控设计中的应用(06-29)
- 仿真技术驱动混合动力车和电动汽车设计(01-05)