基于多传感器信息融合的轮胎压力监测系统
时间:07-24
来源:互联网
点击:
轮胎压力监测系统
融合方法的选择
对于轮胎来说, 压力是其生命,而温度也是不可忽视的。目前轮胎的主要质量问题如“肩空”和“胎圈脱层”等, 即是由于这些部位的温度过高造成的。作者在研制“汽车轮胎安全性能智能”, 所以在其模型中需要融合温度和压力两种信号。
本文采用贝叶斯(Bayes) 方法来融合压力及由温度转化来的压力。该方法不需要任何有关轮胎压力和温度的历史统计资料与专家经验知识, 仅对有限个压力温度传感器(集成传感器) 的测量结果, 以置信距离测度作为数据融合的融合度, 再利用置信矩阵、融合矩阵得到多传感器的最佳融合数。以Bayes 估计理论为基础得到多传感器的最优融合数据。贝叶斯判别法本质上是一种模式分类器, 基于多传感器的贝叶斯判别的过程实际上是决策信息融合的过程。贝叶斯决策属于风险型决策, 决策者虽不能控制客观因素的变化, 但却可掌握其变化的可能状况及各状况的分布概率, 并利用期望值即未来可能出现的平均状况作为决策准则。不确定性是生活中的常态,贝叶斯决策不是使决策问题完全无风险, 而是通过其他途径增加信息量使决策中的风险减小。由此可以看出, 贝叶斯决策是一种比较实际可行的方法。
融合模型
信息融合模型可以从功能、结构和数学模型等几方面来研究和表示。在功能模型上, 本系统的融合级别为检测级, 即直接在多传感器分布检测系统中检测判决或信号层上进行的融合, 它通常是根据所选择的检测准则形成最优化门限, 以产生最终的检测输出。对于其结构模型, 本系统采用并行结构, 也可以采用两级并行结构, 即先把温度信息融合后再同压力信息融合。数学模型是信息融合算法和综合逻辑。系统中同时存在着压力和温度这两种互补信息。互补信息的融合减少了由于缺少某些环境特征而产生的对环境理解的歧义, 提高了系统描述环境的完整性和正确性, 增强了系统正确决策的能力。由于互补信息来自于异质传感器, 它们在测量精度、范围、输出形式等方面有较大的差异, 因此融合前先将不同传感器的信息抽象为同一种表达式就显得尤为重要。在此, 可以通过理想气体定律PV = nR T将温度转化为压力后再融合。推导出的公式为:
p2 = p1 + p1 ( t2 - t1 ) / 273 (1)
其中: t1 为初始温度; t2 为目前温度; p1 为初始压力; p2 为对于t2 的压力。
设第i 个传感器和第j 个传感器所测得的数据为t i 、tj ,且ti 、tj都服从高斯正态分布。所测数据的期望E ( t) , 方差D ( t) 公式为:
如果某个传感器在使用中发生故障, 而在算法中不考虑该情况的话, 就会造成误报或漏报, 所以该系统多传感器信息融合包括失效信息剔除与有效信息融合两大内容。在剔除失效信息后, 以Bayes 估计理论为基础得到多传感器的最优融合数据t :
其中: tk ———第k 个传感器的观测值; σk ———第k 个传感器的测量值的标准偏差; t0 ———L 个有效传感器观测值的均值;σ0 ———L 个有效传感器观测值的标准偏差。
当t 不在给定范围内时就报警。根据文献, 当轮胎气压高于基准胎压的1.2 倍或者低于基准压的25 %时就应该报警, 此时车主应停车检查该轮胎情况, 如无异常, 就降低车速。据业内人士介绍, 当轮胎气压高于基准压3 倍时, 爆胎的几率接近100 %。
系统结构
不同公司生产的传感器、MCU 等为TPMS 设计方案的多样化提供了硬件上的保证, 并且给软件的编制提供了思路 2 轮胎压力监测系统结构图
轮胎压力监测系统由两部分组成: 测量发射部分、接收控制部分, 如图2 所示, 其中测量发射部分负责准确测量发射信息, 由单片机控制采样间隔; 接收控制部分负责融合、分析信号, 判断其是否在给定范围之内, 是否报警。测量发射部分采用3 个NPX传感器, 依据各个引线的功能将其和发射机正确连接, 完成印刷电路板( PCB) 的设计, 在设计的时候要尽量减小其尺寸、减少连线。然后把它们相隔120°嵌入轮胎内, 由轮胎的内压力使其紧贴在轮毂和内胎之间。接收控制部分可制成一个仪器, 放置在驾驶室内驾驶员易于观察的位置。报警可以采用L ED 灯和声音报警两种方式, 灯光的强度及声音的强弱由压力值的大小控制。
结束语
实验中, 设报警限为300 KPa 。6 个传感器的测得数值的期望和方差分别是:
经计算, 传感器6 的数据不被其他5 个传感器支持, 视其为失效数据。其余5 个传感器数据经计算后得到的融合结果为:
可见, t 稍大于300 kPa , 此时系统应该提示驾驶员小心爆胎, 如果继续升压, 就提高报警的级别, 如果有下降的趋势则停止报警。
该系统产品化有个难点: 采集的数据过多, 接收控制部分在辨别所接收的数据是哪一个轮胎的哪一个传感器测得的上面比较困难, 程序较复杂, 系统结构复杂。为了简化结构也可以在每个轮胎内只安装两个NPX 传感器。
融合方法的选择
对于轮胎来说, 压力是其生命,而温度也是不可忽视的。目前轮胎的主要质量问题如“肩空”和“胎圈脱层”等, 即是由于这些部位的温度过高造成的。作者在研制“汽车轮胎安全性能智能”, 所以在其模型中需要融合温度和压力两种信号。
本文采用贝叶斯(Bayes) 方法来融合压力及由温度转化来的压力。该方法不需要任何有关轮胎压力和温度的历史统计资料与专家经验知识, 仅对有限个压力温度传感器(集成传感器) 的测量结果, 以置信距离测度作为数据融合的融合度, 再利用置信矩阵、融合矩阵得到多传感器的最佳融合数。以Bayes 估计理论为基础得到多传感器的最优融合数据。贝叶斯判别法本质上是一种模式分类器, 基于多传感器的贝叶斯判别的过程实际上是决策信息融合的过程。贝叶斯决策属于风险型决策, 决策者虽不能控制客观因素的变化, 但却可掌握其变化的可能状况及各状况的分布概率, 并利用期望值即未来可能出现的平均状况作为决策准则。不确定性是生活中的常态,贝叶斯决策不是使决策问题完全无风险, 而是通过其他途径增加信息量使决策中的风险减小。由此可以看出, 贝叶斯决策是一种比较实际可行的方法。
融合模型
信息融合模型可以从功能、结构和数学模型等几方面来研究和表示。在功能模型上, 本系统的融合级别为检测级, 即直接在多传感器分布检测系统中检测判决或信号层上进行的融合, 它通常是根据所选择的检测准则形成最优化门限, 以产生最终的检测输出。对于其结构模型, 本系统采用并行结构, 也可以采用两级并行结构, 即先把温度信息融合后再同压力信息融合。数学模型是信息融合算法和综合逻辑。系统中同时存在着压力和温度这两种互补信息。互补信息的融合减少了由于缺少某些环境特征而产生的对环境理解的歧义, 提高了系统描述环境的完整性和正确性, 增强了系统正确决策的能力。由于互补信息来自于异质传感器, 它们在测量精度、范围、输出形式等方面有较大的差异, 因此融合前先将不同传感器的信息抽象为同一种表达式就显得尤为重要。在此, 可以通过理想气体定律PV = nR T将温度转化为压力后再融合。推导出的公式为:
p2 = p1 + p1 ( t2 - t1 ) / 273 (1)
其中: t1 为初始温度; t2 为目前温度; p1 为初始压力; p2 为对于t2 的压力。
设第i 个传感器和第j 个传感器所测得的数据为t i 、tj ,且ti 、tj都服从高斯正态分布。所测数据的期望E ( t) , 方差D ( t) 公式为:
如果某个传感器在使用中发生故障, 而在算法中不考虑该情况的话, 就会造成误报或漏报, 所以该系统多传感器信息融合包括失效信息剔除与有效信息融合两大内容。在剔除失效信息后, 以Bayes 估计理论为基础得到多传感器的最优融合数据t :
其中: tk ———第k 个传感器的观测值; σk ———第k 个传感器的测量值的标准偏差; t0 ———L 个有效传感器观测值的均值;σ0 ———L 个有效传感器观测值的标准偏差。
当t 不在给定范围内时就报警。根据文献, 当轮胎气压高于基准胎压的1.2 倍或者低于基准压的25 %时就应该报警, 此时车主应停车检查该轮胎情况, 如无异常, 就降低车速。据业内人士介绍, 当轮胎气压高于基准压3 倍时, 爆胎的几率接近100 %。
系统结构
不同公司生产的传感器、MCU 等为TPMS 设计方案的多样化提供了硬件上的保证, 并且给软件的编制提供了思路 2 轮胎压力监测系统结构图
轮胎压力监测系统由两部分组成: 测量发射部分、接收控制部分, 如图2 所示, 其中测量发射部分负责准确测量发射信息, 由单片机控制采样间隔; 接收控制部分负责融合、分析信号, 判断其是否在给定范围之内, 是否报警。测量发射部分采用3 个NPX传感器, 依据各个引线的功能将其和发射机正确连接, 完成印刷电路板( PCB) 的设计, 在设计的时候要尽量减小其尺寸、减少连线。然后把它们相隔120°嵌入轮胎内, 由轮胎的内压力使其紧贴在轮毂和内胎之间。接收控制部分可制成一个仪器, 放置在驾驶室内驾驶员易于观察的位置。报警可以采用L ED 灯和声音报警两种方式, 灯光的强度及声音的强弱由压力值的大小控制。
结束语
实验中, 设报警限为300 KPa 。6 个传感器的测得数值的期望和方差分别是:
经计算, 传感器6 的数据不被其他5 个传感器支持, 视其为失效数据。其余5 个传感器数据经计算后得到的融合结果为:
可见, t 稍大于300 kPa , 此时系统应该提示驾驶员小心爆胎, 如果继续升压, 就提高报警的级别, 如果有下降的趋势则停止报警。
该系统产品化有个难点: 采集的数据过多, 接收控制部分在辨别所接收的数据是哪一个轮胎的哪一个传感器测得的上面比较困难, 程序较复杂, 系统结构复杂。为了简化结构也可以在每个轮胎内只安装两个NPX 传感器。
传感器 压力传感器 MCU 电压 集成电路 单片机 温度传感器 电路 PCB 相关文章:
- 另类传感器观念:汽车传感器(2)(11-30)
- 满足汽车高温应用环境要求的传感器接口IC(01-10)
- 构建可靠的容性传感器汽车开关和控制接口(01-06)
- 汽车HVAC系统中的传感器(02-23)
- 新技术、新应用让传感器深入汽车电子设备的各个角落(05-11)
- 汽油发动机的传感器全面介绍(05-19)