基于ARM的热敏电阻温度计的设计
时间:09-18
来源:互联网
点击:
4 系统软件设计
由前面热敏电阻温度转换原理的简述可知:热敏电阻特性曲线是一条指数曲线,非线性度较大,又由于非线性处理比较复杂,在本文设计要求不是很高的情况下可以做以简化来处理。
4.1 程序设计流程图
限于篇幅,本文只给出程序设计的流程图。整个程序的流程图如图3所示。
4.2 温度计算程序
在公式T=T0-KVT中,系数值K是一个很小的数。为了方便计算,取扩大256倍后的K值和VT作乘积,即256×K×VT。相乘后,对乘积只取高8位舍弃低8位,就可以抵消系数值K扩大256倍的影响,得到正确的结果。
此外,从图1中热敏电阻的阻值一温度特性曲线可以看出,在+10~150℃的温度范围内,阻值与温度的关系线性度较好。通常就把这个温度范围作为有效温度范围。当温度超出这个范围时,用数码管全部显示F作为标志。
由于有效温度范围没有超过150℃,所以温度显示用3位数码管,其显示格式为:AD XXX其中,XXX为温度值,图2中的LED1和LED2只显示字符A和D,后面三只数码管LED3,LED4和LED5显示温度值。

5 结 语
采用SPI串行接口和MCl4489管理芯片来构成智能化仪器仪表的显示驱动电路可使系统的性能价格比获得大幅度的提高。本文在要求精度不是很高的情况下,将热敏电阻的特性做了简单化线形处理,并利用本文的设计电路对+10~150℃范围内的温度进行了测量,达到了良好效果。在整个设计过程中需要注意的问题有以下几点:
(1)LPC2142微控制器具有独立的模拟电源引脚VDDA,USSA,为了降低噪声和出错几率,模拟电源与数字电源应当用一个10μH的电感进行隔离。
(2)A/D转换参考电压Vref的选择要满足测量精度的需要。如果想提高A/D转换精度,一般均采用基准源芯片来提供参考电压。TL431是一个具有良好热稳定性能的、低噪声的三端可调分流基准源(温度系数为30×10-6/℃)。本文就是采用该基准源芯片来提供参考电压。
(3)由于本系统中LPC2142微控制器作为SPI主机来使用,故其P0.7引脚SSEL要接一个10 kΩ的上拉电阻。
由前面热敏电阻温度转换原理的简述可知:热敏电阻特性曲线是一条指数曲线,非线性度较大,又由于非线性处理比较复杂,在本文设计要求不是很高的情况下可以做以简化来处理。
4.1 程序设计流程图
限于篇幅,本文只给出程序设计的流程图。整个程序的流程图如图3所示。
4.2 温度计算程序
在公式T=T0-KVT中,系数值K是一个很小的数。为了方便计算,取扩大256倍后的K值和VT作乘积,即256×K×VT。相乘后,对乘积只取高8位舍弃低8位,就可以抵消系数值K扩大256倍的影响,得到正确的结果。
此外,从图1中热敏电阻的阻值一温度特性曲线可以看出,在+10~150℃的温度范围内,阻值与温度的关系线性度较好。通常就把这个温度范围作为有效温度范围。当温度超出这个范围时,用数码管全部显示F作为标志。
由于有效温度范围没有超过150℃,所以温度显示用3位数码管,其显示格式为:AD XXX其中,XXX为温度值,图2中的LED1和LED2只显示字符A和D,后面三只数码管LED3,LED4和LED5显示温度值。

5 结 语
采用SPI串行接口和MCl4489管理芯片来构成智能化仪器仪表的显示驱动电路可使系统的性能价格比获得大幅度的提高。本文在要求精度不是很高的情况下,将热敏电阻的特性做了简单化线形处理,并利用本文的设计电路对+10~150℃范围内的温度进行了测量,达到了良好效果。在整个设计过程中需要注意的问题有以下几点:
(1)LPC2142微控制器具有独立的模拟电源引脚VDDA,USSA,为了降低噪声和出错几率,模拟电源与数字电源应当用一个10μH的电感进行隔离。
(2)A/D转换参考电压Vref的选择要满足测量精度的需要。如果想提高A/D转换精度,一般均采用基准源芯片来提供参考电压。TL431是一个具有良好热稳定性能的、低噪声的三端可调分流基准源(温度系数为30×10-6/℃)。本文就是采用该基准源芯片来提供参考电压。
(3)由于本系统中LPC2142微控制器作为SPI主机来使用,故其P0.7引脚SSEL要接一个10 kΩ的上拉电阻。
半导体 电阻 单片机 LED 嵌入式 ARM 电子 传感器 电流 电压 电路 ADC 仿真 显示器 电感 相关文章:
- 航天器DC/DC变换器的可靠性设计(02-12)
- 安森美90W太阳能LED街灯高能效解决方案(05-18)
- 中国安防电子产业发展现状与展望(05-31)
- 用CMOS-NAND门控制水泵(08-10)
- 现实性分析:RFID逐步释放其潜力(06-21)
- 基于 SoPC 的震动信号采集设备设计(08-14)
