微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 工业电子 > 基于MAX1968的半导体激光温控电路设计

基于MAX1968的半导体激光温控电路设计

时间:07-22 来源:互联网 点击:
2.3 EEPROM存储电路  
  
为使掉电后上次设定的参数不至于丢掉,系统还采用了MICROCHIP公司生产的串行EEPROM-24LC02进行掉电前的参数存储,接口方式为I2C串口协议。另外,由于热敏电阻Rt的阻值会随温度的增加呈指数规律递减,故代表温度变化信号Rt上的电压也呈现出非线性变化。因此在软件处理中采用查表的方式来确定实测的温度值。在24LC02中预先存储有10"55℃范围内的温度-电压对应值以备查询。  

3 软件设计  

系统软件采用汇编语言进行模块化结构设计,主要由键盘、显示、温度采集AD转换、温度控制DA输出、存储器读写和PID数据处理等子程序构成。图3为主程序、中断服务程序和中断服务子程序流程图。   


  
图3 系统程序流程图  

4 实验结果  

图4为90分钟内每隔5分钟测量一次所获得的半导体激光器温度控制的实验数据。激光器购自北京海特光电公司,型号FLMS-1310-112。器件封装内集成热敏电阻和TEC,额定工作电流28.5mA。实验时环境温度为23℃,激光二极管的工作温度设置为25℃。从图中曲线可以看出,系统稳定后,激光二极管的温度基本稳定在25℃左右,偏差在±0.1℃内。   

  
图4 半导体激光器温度稳定曲线  

5 结论  

本文设计的半导体激光温度控制器经过实践表明:该控制器可以有效地对激光二极管的工作温度进行控制,电路的控制性能令人满意。相比传统的激光温度控制方案,本文提出的设计方案创新之处在于:采用了MAX1968 TEC驱动芯片和HD7279A键盘和数码管显示控制芯片,大大减少了电路分立元件的数量,改进了系统噪声性能,增加了系统的可靠性;采用PIC16C73单片机进行实时控制,并对信号进行数字滤波、数字PID处理等措施,减少了设计成本,增加了设计的灵活性。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top