微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > MCU和DSP > 基于USB2.0的TMS320VC5402 HPI自举

基于USB2.0的TMS320VC5402 HPI自举

时间:11-25 来源:互联网 点击:
当前,DSP(Digital Signal Processor)芯片已经广泛应用于通信、信号处理、雷达、图像处理等多个领域,其强大、高效的运算能力,是其他微处理器无法比拟的。为充分发挥DSP运算高效的优势,用户程序通常在DSP内部RAM中运行,这就需要利用DSP的自举引导(Boot loader)功能。在DSP多机系统中,HPI自举是首选。目前,采用HPI自举的实例主要有两种,一种是用单片机作为主控制器,通过PC机串口或者外挂的存储器得到要下载的DSP用户程序数据,这种方案无法实现系统与PC机之间数据的实时高速传输;另一种是用PC机并口里控制DSP HPI接口,从而把程序写入DSP 的内部RAM,该方案无法满足嵌入式系统的即插即用要求。

USB接口具有即插即用,速度快(最高可达480Mbps)等特点,可成为PC机的外围设备扩展中应用日益广泛的接口标准,基于USB总线对DSP实现HPI自举,可以降低成本,也便于DSP与PC机的高速数据通信,鉴于此种考虑,本文介绍一种利用USB2.0接口控制芯片(CY7C68013-56PVC)实现TMS320VC5402自举的实现方案。

芯片介绍

USB2.0芯片及其GPIF简介

本方案采用的USB2.0接口控制芯片是Cvpress公司的CY7C6801356PVC,该系列芯片是世界上第一款支持USB2.0的集成微控制器芯片,它集成有USB2.0收发器、智能串行接口引擎(SIE)、增强的8051微处理器,通用可编程接口(GPIF)、片上RAM和FIFO存储器。该系列芯片的智能引擎也支持USB1.1协议,因此,它具有很好兼容性。

CY7C68013与外设有主/从两种接口方式:可编程接口GPIF和Slave FIFO,可编程接口GPIF是一个微状态机,可由软件编写读写控制时序,也可以作为USB FIFO的主控制器与DSP进行无缝连接,GPIF可工作在自动模式,USB总线和GPIF接口域直接进行数据传输,无需8051内核直接参入,以此解决USB2.0高速传输的“瓶颈”问题,GPIF与8051内核关系如图1所示。



DSP芯片及其HPI简介

TMS320VC5402是TI公司的一款性价比极高的低功耗定点数字信号处理器(DSP),该芯片的主机接口(HPI,Host Port Interface)被称为HPI-8。这种HPI-8接口的最大特点是它允许主机访问DSP的整个片内空间。HPI接口通过HPI控制寄存器(HPIC)、地址寄存器(HPIA)数据寄存器(HPID)和HPI内存块来实现与主机的数据通信。主处理器对HPI的访问由内外两部分组成,其中外部主要为主处理与HPI寄存器交换数据,而内部则用于为HPI寄存器与DSP存储单元交换数据(由DMA自动完成)。在进行数据地实时通信时,DSP与主机可以通过中断信号进行握手。其具体实现可通过设置HPIC寄存器的HINT、DSPINT位来对对方进行中断。

硬件设计

设计原理

自举从本质上说就是DSP上电后,在Bootloader引导下,获取应用程序并开始运行的过程,TMS320VC5402上电以后,当MP/MC为低电平时,系统将从片内ROM的OFF80H开始执行,此处的跳转指令使程序跳转至BootLoader程序入口处(OF800H处)。Bootloader程序先清除IFR,并设置HPI入口点(0x7F)的值为0,置HINT为低,再检测INT2是否置位(置位可以通过将HINT和INT2相连来实现),如置位则进行HIP自举,具过程如图2所示。



DSP复位之后,如检测到HPI自举方式有效,就可以进行HPI自举引导,基于USB总线的HPI自举,就是在Bootloader引导下,通过USB接口控制芯片把程序数据由主机(PC)写入DSP内部RAM(DARAM)并使DSP开始运行的过程,该自举过程分为三个步骤:一是写HPIC,以设置HPI控制参数;二是写HPIA,设置访问DSP的首地址;三是通过HPID下载程序。

首先,推动EZ-USB Control Panel下载CY7C68013的固件程序。当重枚举结束,驱动程序(ezusb.sis)重新安装成功后,在Control Panel中通过发送请求的方式由端点0向HPIC(主要设置BOB位,确定字节配合)发送两个相同的8位控制字,而当HPIC初始化完成之后,再通过端点0设置欲下载程序段到DSP中的首地址HPIA。HPIC、HPIA设置好之后,就可以通过端点2下载DSP程序代码段,程序代码段需要分段下载,实际上,CY7C68013通过端点2把数据写入HPID,然后,DSP按照HPIA指定的地址,由DMA自动将HPID中的数据写到RAM,接口控制时序可由GPIF软件编程控制,程序数据分段下载完毕之后,再将程序的入口地址通过端点0写入0x7F处,在主机下载程序的过程中,DSP将一直检测0x7F是否为0,如不为0,即判定DSP已由主机进行了HPI自举加载,并按照该值跳转PC指针,以开始运行,进而完成HPI自举。

硬件电路

本设计用CY7C68013-56PVC与TMS320VC5402的HPI口相连接,接口选择GPIF模式,硬件电路如图3所示,该方案中,HCNTL[1:0]与GPIF的低位地址线PA3、PA2相连,以选择需要访问的HPI的HPIA、HPIC,HPID寄存器,CTL0接至HR/W,可作为读写控制信号,HDS1与输出信号线CTL1相连,以作为HPI访问的选通信号,HBIL与输出信号线CTL2相连,已用于识别传输的是第一个字节还是第二个字节,HRDY接输入信号线RDY0。用于通过主机查询HPI口的状态,HINT、INT2与INT0连接,可确保HPI自举有效,HCS接GND,可使HPI片选信号有效,HPIENA接高电平时,HPI使能,HAS、HDS2接高电平时,信号线禁用。数据线PD[7:0]与HD[7:0]相连,可在控制时序作用下传输一切数据信号。HPI接口控制时序由CTL0、CTL1、CTL2引脚输出,在自举过程中,系统将关闭CY7C68013所有的中断,若要通过中断实现数据通信的握手,可以在自举完毕打开CY7C68013的中断。



CY7C68013的具体配置为:启用GPIF接口控制数据传输,GPIF接口采用内部时钟(48MHz);端点2设置为批量传输输出端点,最大传输值是512字节,双缓冲;终端4、8禁用。端点6可作为批量传输输入端点来向主机传输数据,需要说明的是端点6不是自举所必需的。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top