用89C51单片机控制红外线通信接口电路设计
时间:10-23
来源:互联网
点击:
2.3 数码显示部分
在系统中,选用一个双七段数码管来显示发送和接收的数据。数码管采用DPY双位七段共阳数码管。高位的共阳极是lO脚,低位的共阳极是5脚。由单片机的P O口控制数码管的阴极,P2.6,P2.7口分别控制数码管的高位和低位,当P2口输出数位“0”时,相应的三极管导通。根据PO口输出不同数位,数码管显示不同的数字,当P2口输出数位“l”时,三极管截止,数码管不显示。
2.4 发光二极管显示部分设计
有8个发光二极管与单片机的P1口相连,二极管的正极与电源正极相连,负极串联一个电阻与Pl口相连,给Pl口送低电平就得到不同的显示状态。
2.5 按键部分设计
有四个按键与单片机的P3口相连,按键的一边接地,另外一边与单片机的P3.2、P3.4、P3.5口相连。单片机控制的红外通信接口电路的整体图如图4所示。
其工作过程:单片机通过TXD发出串行数据,通过由NE555构成的多谐震荡电路产生38 kHz脉冲序列作为载波信号,通过红外发射管将信号以950 nm的红外光束发出,红外接收模块TOSPl738将接收到的光脉冲转换成电信号,再经过发大、滤波等处理后送给解调电路进行解调,还原为二进制数字信号后输出到单片机的RXD口。单片机对接收到的数据进行处理,将相应的数据显示在数码管上。这样,一个单片机控制的红外通信系统就实现了通信。
为了保证红外接收模块TSOPl738接收的准确性,要求发送端载波信号的频率应尽可能接近38 kHz,因此在设计脉冲震荡器时,要选用精密元件并保证电源电压稳定。还有,发送的数位“O”至少要对应14个载波脉冲,这就要求传输的波特率不能超过2 400 bps。
3 单片机控制的红外通信的主程序
P3.2为开始键.也为功能选择键,P3.5为功能确认键
4 结束语
单片机控制的红外通信系统具有硬件电路简单、成本低廉、编程方便、通信可靠性高等优点,实现了通信双方非接触的数据,在遥控、遥测等应用场合得到广泛应用。
在系统中,选用一个双七段数码管来显示发送和接收的数据。数码管采用DPY双位七段共阳数码管。高位的共阳极是lO脚,低位的共阳极是5脚。由单片机的P O口控制数码管的阴极,P2.6,P2.7口分别控制数码管的高位和低位,当P2口输出数位“0”时,相应的三极管导通。根据PO口输出不同数位,数码管显示不同的数字,当P2口输出数位“l”时,三极管截止,数码管不显示。
2.4 发光二极管显示部分设计
有8个发光二极管与单片机的P1口相连,二极管的正极与电源正极相连,负极串联一个电阻与Pl口相连,给Pl口送低电平就得到不同的显示状态。
2.5 按键部分设计
有四个按键与单片机的P3口相连,按键的一边接地,另外一边与单片机的P3.2、P3.4、P3.5口相连。单片机控制的红外通信接口电路的整体图如图4所示。

其工作过程:单片机通过TXD发出串行数据,通过由NE555构成的多谐震荡电路产生38 kHz脉冲序列作为载波信号,通过红外发射管将信号以950 nm的红外光束发出,红外接收模块TOSPl738将接收到的光脉冲转换成电信号,再经过发大、滤波等处理后送给解调电路进行解调,还原为二进制数字信号后输出到单片机的RXD口。单片机对接收到的数据进行处理,将相应的数据显示在数码管上。这样,一个单片机控制的红外通信系统就实现了通信。
为了保证红外接收模块TSOPl738接收的准确性,要求发送端载波信号的频率应尽可能接近38 kHz,因此在设计脉冲震荡器时,要选用精密元件并保证电源电压稳定。还有,发送的数位“O”至少要对应14个载波脉冲,这就要求传输的波特率不能超过2 400 bps。
3 单片机控制的红外通信的主程序
P3.2为开始键.也为功能选择键,P3.5为功能确认键


4 结束语
单片机控制的红外通信系统具有硬件电路简单、成本低廉、编程方便、通信可靠性高等优点,实现了通信双方非接触的数据,在遥控、遥测等应用场合得到广泛应用。
红外 电路 二极管 发光二极管 放大器 场效应管 滤波器 单片机 振荡器 三极管 555 电阻 电容 Vishay 电压 相关文章:
- 基于红外超声光电编码器的室内移动小车定位系统(06-30)
- 基于双Nios II的红外图像实时Otsu局部递归分割算法设计(07-21)
- 红外热成像诊断技术在建筑搂宇的多种应用(03-08)
- 基于ARM9和GSM/GPRS的无线可移动红外监测报警系统(10-15)
- 智能家居系统中自动窗帘控制系统的设计实现(07-05)
- 基于ZigBee与红外的家居监控系统(09-29)
