IC卡接口芯片TDA8007的读写器设计
时间:04-13
来源:互联网
点击:
IC卡(Integrated Circuit card)即集成电路卡,是将一个集成电路芯片镶嵌于朔料基片中,封装成卡的形式,外形与常用的覆盖磁条的磁卡相似。IC卡芯片具有写入和存储数据的能力。IC卡存储器中的内容根据需要可以有条件地供外部读取,或供内部信息处理和判定。根据卡中所镶嵌的集成电路的不同,可以分成存储器卡、逻辑加密卡、 CPU卡三类。其中CPU卡即为由中央处理器CPU、EEPROM、随机存储器RAM以及固化在只读存储器ROM中的片内操作系统COS(Chip Operation System)组成的IC卡。IC卡按与外界数据传送的形式来分,有接触式和非接触式两种。
1 CPU IC卡T=0的协议介绍
目前大多数CPU IC卡采用T=0模式。所谓T=0,即CPU IC卡与接口设备(即读写器)中数据传输方式为异步半双工字符传输模式。
从T=0协议的功能出发,该协议的实现可以分为物理层、数据链路层、终端传输层和应用层。其中物理层和数据链路层可以具体参看ISO7816标准。在T=0协议应用,终端传输层和应用层实际上是不易分割来说明的,下面简单说明。
终端传输层根据卡片返回的过程字符和状态字节执行相应的操作,使读写器对数据的处理过程明朗清晰。卡片返回的过程字节和状态字节跟应用层发送给卡的APDU(Application Protocol Data Unit,应用协议数据单元)和VPP使用等有关。表1为VPP未用时的终端传输层中返回的过程字节。
表1
应用层即为由CLA、INS、P1、P2、P3作为命令头组成的命令消息体的APDU响应和应答处理层。其中CLA为指令类别,INS为指令码,P1、P2为参数,P3为根据APDU的不同格式为发送给卡的数据长度或期望响应的数据长度。APDU的几种情况如表2所列。
表2
CPU卡对接口设备(即读写器)的应答APDU情况如表3所列。
表3
其中体中的数据字节数由命令APDU中的LE指出;SW1、SW2是必备的,可以指明命令APDU执行正确或执行出错的错误类型。
2 基于T=0传输协议的CPU IC的APDU指令流程
根据目前CPU卡的常用T=0协议、自带编程升压电路的应用情况,以及本读写器接收IC卡数据报文直接发送PC机处理的特点,本读写器可行的 APDU命令和响应的处理流程如图1所示。
3 读写器的硬件组成
读写器的硬件部分主要由IC接口管理芯片TDA8007、MCUAT89C52、外部数据存储器W24257S、串口电平转换芯片 MAX3226、安全IC卡座(即SAM卡座)、应用IC卡座、键盘口供电的串口通信线及其它相关元器件组成。
图2所示为通过PC机控制管理的外置于PC机的接触式CPU IC卡读写器。通过定制的数据线,该读写器的5V直流电源可直接由键盘口提供,同时数据线还负责PC机与读写器的串行数据交换。在大部分IC卡读写应用中,都涉及到IC卡的认证和数据读写的国解密问题,所以本读写器除了提供一个供用户使用的IC卡接口卡座外,还内置了一个SAM卡,即安全IC卡卡座,以方便安装SAM卡,保证应用IC卡读写时的数据安全,保护用户的利益。
硬件的其它组成部分,如处理器,目前采用Atmel的89C52。其4KB的Flash程序存储器可以满足读写器的程序空间需要。由于PC机与 89C52、89C52与TDA8007的数据交换要求的暂存数据空间比较大,89C52提供的256字节不够,需外加一片数据存储器。本读写器中使用的是华邦的W24257S。其有32KB存储容量,IC接口部分的主要芯片为Philips的TDA8007。
4 IC卡接口芯片应用
下面介绍一下TDA8007及其应用。TDA8007的原理结构如图3所示。
TDA8007芯片能够提供两个能同时满足ISO7816标准及EMV和GSM11-11标准的IC卡读写接口。在本读写器中,一个用于与应用 IC通信,另一个用于与安全IC卡通信。与上文CPU卡的触点图相对应,CLKi、RSTi、VCCi、I/Oi、GNDCi、PRESi、C4i、 C8i(其中i=1,2;C4i、C8i未用;PRESi可用于检测IC卡是否插入。具体应用可参看TDA8007的技术文档)都直接由TDA8007提供给IC卡接口相连,MCU只需通过其接口控制并行通信来管理TDA8007,便可实现对IC卡的上电、下电及读写数据处理。其中,微处理器既可以通过总线复用把TDA8007内部的所有寄存器作为外部存储器,用MOVX寻址,也可以通过非总线复用方式访问,此时TDA8007用AD0~AD3来区分内部各寄存器。另外,TDA8007的片选信号和外部中断信号线可以方便读写器处理多个IC卡头。TDA8007的特别硬件ESD处理、接口短路处理、电源出错处理等也给IC卡和IC卡读写器提供了比较高的安全保护;同时,TDA8007内部集成的电源管理功能允许TDA8007的供电范围可达 2.7~6.0V,并且TDA8007通过电源管理可以给IC卡提供5.0V、3.0V及1.8V的电源,以适合不同工作电压的IC卡应用。
本读写器是通过总线复用对TDA8007的寄存器进行控制的。其中MCU的P1.5为TDA8007的片选,P0口为与之通信的8位数据线,TDA8007的各寄存器预先被宏定义的成微处理器的一个外部数据单元(下面电程序处的定义),从而方便MCU访问。下面结合TDA8007寄存器的定义和位分配,给出应用TDA8007接口芯片对IC卡进行上电激活和下电的程序。TDA8007的寄存器主要三类。第一类,通用寄存器:①卡槽选择 CSR;②硬件状态HSR;③定时器TOR1、TOR2、TOR3。第二类,ISO7816串行处理寄存器:①串行状态USR;②混合状态MSR;③串行发送UTR;④串行接收URR;⑤队列控制FCR。第三类,卡专属寄存器:①可编程分频PDR;②保护时间GTR;③串行控制UCR1、UCR2;④时钟配置CCR;⑤上电控制PCR。注意:对于卡专属的寄存器,即卡接口1、卡接口2分别对应的寄存器,逻辑上具有相同的名及访问地址,因而,对不同的瞳操作,需要通过CSR选择对应的卡槽来切换卡专卡属寄存器的映射的物理空间。所以,接口设备每次从一个卡的上下电或读写转向另一卡,都需要访CSR设定对应的卡槽。对于每个寄存器的位定义不再多述,主动性者可参看TDA8007的技术文档。
1 CPU IC卡T=0的协议介绍
目前大多数CPU IC卡采用T=0模式。所谓T=0,即CPU IC卡与接口设备(即读写器)中数据传输方式为异步半双工字符传输模式。
从T=0协议的功能出发,该协议的实现可以分为物理层、数据链路层、终端传输层和应用层。其中物理层和数据链路层可以具体参看ISO7816标准。在T=0协议应用,终端传输层和应用层实际上是不易分割来说明的,下面简单说明。
终端传输层根据卡片返回的过程字符和状态字节执行相应的操作,使读写器对数据的处理过程明朗清晰。卡片返回的过程字节和状态字节跟应用层发送给卡的APDU(Application Protocol Data Unit,应用协议数据单元)和VPP使用等有关。表1为VPP未用时的终端传输层中返回的过程字节。
表1
字 节 | 值 | 结 果 |
ACK | INS | VPP空闲,所有其余的数据字节相继续被传送 |
INS+'FF' | VPP空闲,下一个数据字节随后被传送 | |
SW1 | SW2 | VPP空闲,接口设备等待SW2字节 |
应用层即为由CLA、INS、P1、P2、P3作为命令头组成的命令消息体的APDU响应和应答处理层。其中CLA为指令类别,INS为指令码,P1、P2为参数,P3为根据APDU的不同格式为发送给卡的数据长度或期望响应的数据长度。APDU的几种情况如表2所列。
表2
命令头 | 发送数据长度 | 发送的数据 | 期望应答的数据长度 | |
通用APDU | CLA INS P1 P | LC | Data | LE |
情况一 | CLA INS P1 P |
|
|
|
情况二 | CLA INS P1 P |
|
| LE |
情况三 | CLA INS P1 P | LC | Data |
|
情况四 | CLA INS P1 P2 | LC | Data | LE |
表3
体 | 尾 |
数据Data | SW1 SW2 |
2 基于T=0传输协议的CPU IC的APDU指令流程
根据目前CPU卡的常用T=0协议、自带编程升压电路的应用情况,以及本读写器接收IC卡数据报文直接发送PC机处理的特点,本读写器可行的 APDU命令和响应的处理流程如图1所示。
3 读写器的硬件组成
读写器的硬件部分主要由IC接口管理芯片TDA8007、MCUAT89C52、外部数据存储器W24257S、串口电平转换芯片 MAX3226、安全IC卡座(即SAM卡座)、应用IC卡座、键盘口供电的串口通信线及其它相关元器件组成。
图2所示为通过PC机控制管理的外置于PC机的接触式CPU IC卡读写器。通过定制的数据线,该读写器的5V直流电源可直接由键盘口提供,同时数据线还负责PC机与读写器的串行数据交换。在大部分IC卡读写应用中,都涉及到IC卡的认证和数据读写的国解密问题,所以本读写器除了提供一个供用户使用的IC卡接口卡座外,还内置了一个SAM卡,即安全IC卡卡座,以方便安装SAM卡,保证应用IC卡读写时的数据安全,保护用户的利益。
硬件的其它组成部分,如处理器,目前采用Atmel的89C52。其4KB的Flash程序存储器可以满足读写器的程序空间需要。由于PC机与 89C52、89C52与TDA8007的数据交换要求的暂存数据空间比较大,89C52提供的256字节不够,需外加一片数据存储器。本读写器中使用的是华邦的W24257S。其有32KB存储容量,IC接口部分的主要芯片为Philips的TDA8007。
4 IC卡接口芯片应用
下面介绍一下TDA8007及其应用。TDA8007的原理结构如图3所示。
TDA8007芯片能够提供两个能同时满足ISO7816标准及EMV和GSM11-11标准的IC卡读写接口。在本读写器中,一个用于与应用 IC通信,另一个用于与安全IC卡通信。与上文CPU卡的触点图相对应,CLKi、RSTi、VCCi、I/Oi、GNDCi、PRESi、C4i、 C8i(其中i=1,2;C4i、C8i未用;PRESi可用于检测IC卡是否插入。具体应用可参看TDA8007的技术文档)都直接由TDA8007提供给IC卡接口相连,MCU只需通过其接口控制并行通信来管理TDA8007,便可实现对IC卡的上电、下电及读写数据处理。其中,微处理器既可以通过总线复用把TDA8007内部的所有寄存器作为外部存储器,用MOVX寻址,也可以通过非总线复用方式访问,此时TDA8007用AD0~AD3来区分内部各寄存器。另外,TDA8007的片选信号和外部中断信号线可以方便读写器处理多个IC卡头。TDA8007的特别硬件ESD处理、接口短路处理、电源出错处理等也给IC卡和IC卡读写器提供了比较高的安全保护;同时,TDA8007内部集成的电源管理功能允许TDA8007的供电范围可达 2.7~6.0V,并且TDA8007通过电源管理可以给IC卡提供5.0V、3.0V及1.8V的电源,以适合不同工作电压的IC卡应用。
本读写器是通过总线复用对TDA8007的寄存器进行控制的。其中MCU的P1.5为TDA8007的片选,P0口为与之通信的8位数据线,TDA8007的各寄存器预先被宏定义的成微处理器的一个外部数据单元(下面电程序处的定义),从而方便MCU访问。下面结合TDA8007寄存器的定义和位分配,给出应用TDA8007接口芯片对IC卡进行上电激活和下电的程序。TDA8007的寄存器主要三类。第一类,通用寄存器:①卡槽选择 CSR;②硬件状态HSR;③定时器TOR1、TOR2、TOR3。第二类,ISO7816串行处理寄存器:①串行状态USR;②混合状态MSR;③串行发送UTR;④串行接收URR;⑤队列控制FCR。第三类,卡专属寄存器:①可编程分频PDR;②保护时间GTR;③串行控制UCR1、UCR2;④时钟配置CCR;⑤上电控制PCR。注意:对于卡专属的寄存器,即卡接口1、卡接口2分别对应的寄存器,逻辑上具有相同的名及访问地址,因而,对不同的瞳操作,需要通过CSR选择对应的卡槽来切换卡专卡属寄存器的映射的物理空间。所以,接口设备每次从一个卡的上下电或读写转向另一卡,都需要访CSR设定对应的卡槽。对于每个寄存器的位定义不再多述,主动性者可参看TDA8007的技术文档。
集成电路 电路 MCU Atmel 总线 电源管理 电压 CSR 电容 电子 单片机 嵌入式 相关文章:
- 单芯片集成电路优化自适应转向大灯系统的设计 (07-12)
- 基于FPGA的液晶显示控制器设计(02-17)
- DJ1001-063一风扇单片微电脑集成电路图(04-09)
- 嵌入式系统是嵌入式软件与IC发展基础(11-03)
- 应用处理器连接汽车和消费电子两大领域(02-26)
- ARM、FPGA和DSP的特点和区别是什么?(05-08)