微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > MCU和DSP > 基于双CPU的实时光电图像识别系统

基于双CPU的实时光电图像识别系统

时间:05-24 来源:互联网 点击:
2.2 目标图像采集与处理模块
   
      该模块主要由DSP处理器TMS320C6416和FPGA来实现,DSP和FPGA之间采用主/从方式。其中,DSP主要完成对目标图像的处理及控制FPGA采样信号的启动。FPGA则完成对目标图像的采样控制过程,其硬件结构图如图2所示。

       由摄像头拍摄到的图像首先进行信号调理,即对图像进行嵌位、锬相、放大以及同步信号分离。然后,由DSP启动对图像信号的采样,即控制FPGA进行图像的采样,同时通过中断查询方式(FTNT),监控FPGA发出的采样完成信号。

       采用TI公司的TLC5510芯片来进行高速A/D采样。TLC5510为5V电源、8位、20Msps的高速并行ADC,最大量程为2V。为了达到实时处理的目的,本系统只采集灰度图像,CCD图像的帧频为30Hz,帧图像分辨率为512×512像素,每个像素点8位量化。

        FPGA在行(HS)、场(VS)同步信号和时钟信号的驱动下,产生A/D采样的控制信号来控制采样过程,同时,FPGA提供存储器地址及片选与读写控制信号,数字信号按照该地址并在RAM_W有效时,写入FPGA存储器RAM中,为图像预处理作好准备。

       采样完成后,FPGA产生外部中断,向DSP发出中断请求,DSP进入中断处理:FPGA提供RAM的地址信号,并在RAM_R有效时,DSP将RAM中的采样数据以EDMA方式读至同步动态存储器SDRAM中。SDRAM为4balaks×512 kb×32b,时钟主频为166MHz,这样就保证了工作时所需的存储容量和实时性的要求。数据传输完毕,DSP启动FPGA进行下一帧图像的采样,FPGA再次进入采样控制处理过程,DSP则对目标图像数据进行预处理和畸变等处理。

       在完成对目标图像的数据处理后,DSP将处理后目标图像和存储在ROM中的参考图像构成的联合输入图像实时输出到液晶电视上的约定区域内,以便进行光信息处理。

      2.3 自动识别模块

   
     自动识别模块采用三星公司ARM处理器S3C2440来完成。S3C2440处理器是基于ARM920T内核的32位RISC嵌入式芯片。该ARM内核的CPU主频最高可达533MHz,此处使用499MHz,它除了集成3个串口、SD卡控制器、USB Host控制器、LCD控制器、NandFlash控制器以及实时时钟外,还增添了工业控制总线(CAN)、Camera控制器(数码摄像机接口)、PCMCIA接口(可接无线网卡或调制解调器及其他外设)。另外,用1个96针总线插槽引出CPU的局部总线,可外接其他总线设备并与多方通信。目前,S3C2440已被广泛应用于工业控制、多媒体处理、消费类电子及网络通信等领域。

       S3C2440处理器的接口框图如图3所示。S3C2440内置Camera控制器,并支持最大为4096×4096像素的图像输入,因此本系统对联合频谱图像的获取选用130万像素摄像头进行视频采集与传输,通过Catnera控制器完成对频谱图像的数据转换与存储,然后对频谱进行振幅调制和傅里叶反变换,得到互相关结果,从而进行判别与处理。

        图3中,64MB NANDFlash采用三星的。K9F1208,用于存放应用程序;2MB的NORFlash采用AMD的AM29LV160DB,用于存放Bootloader及Kernel;64MBSDRAM采用现代的HY57V561620;32KB FRAM(铁电存储器),减少对Flash的频繁操作,延长Flash寿命,同时防止掉电时数据丢失。

       S3C2440作为主控处理器,还负责与上位机进行通信,并可通过网卡与Internet进行互联,实现该系统的智能化与网络化。另外,还可通过USB接口进行数据的存取。

       2.4 系统软件主流程

   
        该光电混合图像识别系统工作主流程如图4所示。ARM和DSP在完成初始化后,通过HPI口加载DSP程序并通过中断激活DSP运行;DSP在工作后启动FPGA,FPGA控制A/D采样芯片进行实时图像采集。

       3 结论
   
      本文研究与设计了一种新型的基于双CPU技术的光电图像识别系统。该系统由TMS320C6416与FPGA完成目标图像的采集与处理,通过光电相关联合变换器得到图像的联合频谱,利用S3C2440完成对相关功率谱的采集与目标图像自动识别。该识别系统图像处理能力达25帧/s,因而实现了真正动态图像的图像识别。与传统光电图像识别系统相比,该系统实时性和精度更高,并实现了智能化和网络化,有较高的实用价值。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top