微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 消费类电子 > 电阻电桥基础

电阻电桥基础

时间:12-06 来源:互联网 点击:


  图5. 连接低阻电桥的例子


  差分与仪表
  对于很多应用,可以用差分放大器取代仪表放大器。不仅可以降低成本,还可以减少噪声源和失调漂移的来源。对于上述放大器,必须考虑电桥阻值和TRC。
  双电源供电
  图6电路结构非常简单,电桥输出只用了两个运算放大器和两个电阻即完成了放大、电平转换,并输出以地为参考的信号。另外,电路还使电桥电源电压加倍,使输出信号也加倍。但这个电路的缺点是需要一个负电源,并在采用有源电桥时具有一定的非线性。如果只有某一侧电桥使用有源元件时,将电桥的非有源侧置于反馈回路可以产生-Ve,从而避免线性误差。

  

  图6. 与低阻电桥连接的替代电路


  总结

  电阻电桥对于检测阻值的微小变化并抑制干扰源造成的阻值变化非常有效。新型模/数转换器(ADC)大大简化了电桥的测量。增加一个此类ADC即可获得桥路检测ADC的主要功能:差分输入、内置放大器、自动零校准、高共模抑制比以及数字噪声滤波器,有助于解决电桥电路的关键问题。

(二)、
  摘要:电桥是用来精密测量电阻或其他模拟量的一种非常有效的方法。本文介绍了如何实现具有较大信号输出的硅应变计与模数转换器(ADC)的接口。特别是Σ-Δ ADC,当使用硅应变计时,它是一种实现压力变送器的低成本方案。

  概述

  本文第一部分,应用笔记3426:电阻电桥基础:第一部分,主要论述了为什么要使用电阻电桥,电桥的基本配置,以及一些具有小信号输出的电桥,例如粘贴丝式或金属箔应变计。本篇应用笔记则侧重于高输出的硅应变计。本篇应用笔记作为第二部分,重点介绍高输出的硅应变计,以及它与高分辨率Σ-Δ模数转换器良好的适配性。举例说明了如何为给定的非补偿传感器计算所需ADC的分辨率和动态范围。本文演示了在构建一个简单的比例电路时,如何确定ADC和硅应变计的特性,并给出了一个采用电流驱动传感器的简化应用电路。

  硅应变计的背景知识

  硅应变计的优点在于高灵敏度。硅材料中的应力引起体电阻的变化。相比那些仅靠电阻的尺寸变化引起电阻变化的金属箔或粘贴丝式应变计,其输出通常要大一个数量级。这种硅应变计的输出信号大,可以与较廉价的电子器件配套使用。但是,这些小而脆的器件的安装和连线非常困难,并增加了成本,因而限制了它们在粘贴式应变计应用中的使用。然而,硅应变计却是MEMS (微机电结构)应用的最佳选择。利用MEMS,可将机械结构建立在硅片上,多个应变计可以作为机械构造的一部分一起制造。因此,MEMS工艺为整个设计问题提供了一个强大的、低成本的解决方案,而不需要单独处理每个应变计。
  MEMS器件最常见的一个实例是硅压力传感器,它是从上个世纪七十年代开始流行的。这些压力传感器采用标准的半导体工艺和特殊的蚀刻技术制作而成。采用这种特殊的蚀刻技术,从晶圆片的背面选择性地除去一部分硅,从而生成由坚固的硅边框包围的、数以百计的方形薄片。而在晶片的正面,每一个小薄片的每个边上都制作了一个压敏电阻。用金属线把每个小薄片周边的四个电阻连接起来就形成一个全桥工作的惠斯登电桥。然后使用钻锯从晶片上锯下各个传感器。这时,传感器功能就完全具备了,但还需要配备压力端口和连接引线方可使用。这些小传感器便宜而且相对可靠。但也存在缺点。这些传感器受温度变化影响较大,而且初始偏移和灵敏度的偏差很大。

  压力传感器实例

  在此用一个压力传感器来举例说明。但所涉及的原理适用于任何使用相似类型的电桥作为传感器的系统。式1给出了一个原始的压力传感器的输出模型。式1中变量的幅值及其范围使VOUT在给定压力(P)下具有很宽的变化范围。不同传感器在同一温度下,或者同一传感器在不同温度下,其VOUT都有所不同。要提供一个一致的、有意义的输出,每个传感器都必须进行校正,以补偿器件之间的差异和温度漂移。长期以来都是使用模拟电路进行校准的。然而,现代电子学使得数字校准比模拟校准更具成本效益,而且数字校准的准确性也更好。利用一些模拟“窍门”,可以在不牺牲精度的前提下简化数字校准。
  VOUT = VB × (P × S0 × (1 + S1 × (T - T0)) + U0 + U1 × (T - T0))(式1)
  式中,VOUT为电桥输出,VB是电桥的激励电压,P是所加的压力,T0是参考温度,S0是T0温度下的灵敏度,S1是灵敏度的温度系数(TCS),U0是在无压力时电桥在温度T0输出的偏移量(或失衡),而U1则是偏移量的温度系数(OTC)。
  式1使用一次多项式来对传感器进行建模。有些应用场合可能会用到高次多项式、分段线性技术、或者分段二次逼近模型,并为其中的系数建立一个查寻表。无论使用哪种模型,数字校准时都要对VOUT、VB和T进行数字化,同时要采用某种方式来确定全部系数,并进行必要的计算。式2由式1整理并解出P。从式2可以更清楚地看到,为了得到精确的压力值,数字计算(通常由微控制器(µC)执行)所需的信息。
  P = (VOUT/VB - U0 - U1 × (T-T0))/(S0 × (1 + S1 × (T-T0))(式2)

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top