微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 微波器件设计 > 薄膜体声波滤波器的材料、设计及应用

薄膜体声波滤波器的材料、设计及应用

时间:12-11 来源:mwrf 点击:

存在许多亟待解决的问题,但不可否认的是,PZT在FBAR方面仍然具有广阔的应用前景。

2.3、压电薄膜的分析与表征

在压电薄膜的制备过程中,不可避免地要涉及到薄膜样品的表征,以优化工艺条件。通常采用的分析测试手段包括:[19](1)对材料的X射线衍射(xRD)分析,以了解薄膜的晶相结构和取向状况;(2)电子显微分析,如通过扫描电子显微镜(sEM)和原子力显微镜(AFM)观察薄膜的表面形貌,了解薄膜的均匀性、致密性与表面粗糙度,通过透射电:显微镜(TEM)对各层薄膜界面进行分析;(3)电子能谱分析,如利用XPS、EDS等对薄膜的化学计量进行分析;(4)热膨胀分析、薄膜应力分析及绝缘电阻分析等。只有选择适合的制备工艺,并辅以科学的分析表征手段才能获得适用于BAW器件的高性能压电薄膜。

3、BAW滤波器的原理、结构与建模

在设计滤波器时,为了实现不同性能指标的设计需要,设计流程的简便和快捷十分重要。考虑到FBAR的厚度比其横向尺寸一般要小很多,可以近似地采用厚度方向的一维模型来分析FBAR的特性,借一维的声学和压电方程推导出FBAR的阻抗方程。但这种模型对于滤波器的设计显得较为复杂,因此还需要引入一种更简单、紧凑的集总参数模型来描述FBAR。图2是一种简单的模型范例,它被称作"ButterworthVan-Dyke"(BVD)模型][20]。BVD模型可由简单谐振器的阻抗方程推出,描述的是在低频或谐振点附近频率处器件的电学特性。

通过测量实际制备的FBAR的阻抗特性曲线或传输系数曲线,可以得到器件的串、并联谐振频率fs和fp,还可测得静态电容Cf以及串联谐振点处的阻抗R值。通过对等效电路的分析,谐振器的阻抗表达式可以描述为[20]

Z=(1/jwCf)zs/zp

其中:

因此,可以通过下式算出等效电路各分立元件的参数值:

以上定义的BVD模型中各个分立元件的参数值都是紧密相关的,不可单独调整某个元件参数值来改善滤波器的整体性能。BVD模型的阻抗特性与实际应用情况较接近,并且具有结构简单的显著优点,因此,BVD模型成为设计滤波器的一种首选方案。

将多个谐振器通过某种方式连接可以构成符合各种需求的滤波器。如图3所示,通常有两种连接方式[21]:一种是以FBAR为基本单元,通过梯型级联或格型桥接的方式构成滤波器网络;另一种是将谐振器通过机械耦合连接形成滤波器,它利用FBAR激励的声波在厚度方向传播的属性,将多个谐振器在厚度方向叠加构成晶体叠层型滤波器(SCF);或者通过一耦合层将它们连接起来构成耦合谐振滤波器(CRF)[22]。不同结构形式的滤波器具有各不相同的优缺点,因此可以将它们相互连接构成所需要的滤波器结构。

图3(a)为梯型级联结构的滤波器,由于其FBAR单元在制作过程中能单独进行阻抗和中心频率的优化,同时可以采用相对简单的连接方式,因此梯型级联结构成为最常用的滤波器结构。梯型结构的滤波器由1组串联谐振器和1组并联谐振器构成。优化这种结构,是寻求低插入损耗和高抑制频带衰减的1种平衡;增加连接的级数能有效提高带外抑制衰减,但也会因为连接的谐振器数量的增加而导致插入损耗的增大[23]。谐振器有两个特征频率,在谐振频率点fr处阻抗最小,而在反谐振频率点fa处阻抗最大。图4(a)为由1个串联谐振器和1个并联谐振器级联构成的最简单的级联滤波器结构。并联FBAR的反谐振频率fa与串联FBAR的谐振频率fr相近,以实现滤波器的通带中心频率;串联FBAR的反谐振频率fa构成滤波器的上阻带衰减点,并联FBAR的谐振频率fa构成滤波器的下阻带衰减点[24]。图4(b)为相应的传输系数曲线。

相对于梯型结构,格型结构的滤波器有更大的带宽响应,同时由于其平衡的对称结构,使它更适用于对称电路。SCF和CRF结构的滤波器在不增加插损的情况下具有更好的带外抑制性能,因此更适合在高频、小尺寸、高阻带衰减要求的设备中应用。而对于CRF结构的滤波器,由于结构中耦合层的存在,可以通过改变耦合层材料的种类或厚度来实现通频带宽及中心频率的方便调节。然而,这两种结构的滤波器需要沉积至少两层压电薄膜,在制备工艺上难度更大[25];而且元件整体的谐振模式会受到上下两个谐振器谐振状态的影响,从而导致频谱变得较复杂且难以分析。图5为3种结构滤波器的滤波特性比较,可以看出,CRF和SCF结构具有更好的带外抑制性能,且CRF结构有更大的带宽响应,但梯型结构的滤波器则具有更陡峭的滚降曲线。因此,可以将3种结构结合起来以获得更佳性能的滤波器[21]。

4、结语

近1O年来,随着无线通信技术的迅猛发展,新一代高性能滤波器成为了目前研究的热点之一。BAW滤波器因其优异的性能具有很

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top