微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 微波器件设计 > FBAR滤波器的工作原理及制备方法

FBAR滤波器的工作原理及制备方法

时间:12-01 来源:mwrf 点击:

近年来,随着无线通信技术朝着高频率和高速度方向迅猛发展,以及电子元器件朝着微型化和低功耗的方向发展,基于薄膜体声波谐振器(Film Bulk Acoustic Resonator,FBAR)的滤波器的研究与开发越来越受到人们的关注。

传统的无线通信系统常常用到介质滤波器和SAW(Surface Acoustic Wave,声表面波)滤波器。介质滤波器虽然有较好的性能,但体积大,不便于用到便携式设备中;SAW滤波器体积小,目前虽得到广泛运用,但仍存在工作频率不高、插入损耗较大、功率容量较低等缺点;而FBAR滤波器既综合了介质陶瓷性能优越和SAW体积较小的优势,又克服两者的缺点,其体积小、高Q值、工作频率高、功率容量大、损耗低,是替代SAW滤波器的下一代滤波器,也是被业界认为最有可能实现射频模块全集成化的滤波器。

FBAR滤波器历史背景

FBAR这一名称源于体声波(BAW,Bulk Acoustic Wave)。BAW的概念是20世纪60年代提出的,但直到1980年Lakin和Wang首次在Si芯片上制成基波频率435Mhz的薄膜谐振器,才引起人们的注意。1990年,Krishnaswamy和Rosenbaum等人首次将FBAR结构滤波器扩展到Ghz频段。

随后,安捷伦公司(Agilent)经过长达10年的研究,终于成功在1999年研发出应用于美国PCS1900MHz频段的薄膜腔声谐振滤波器(size 5.8*11.8*1.8),同时正式提出FBAR的称谓。并在2001年将其大规模量产。随后美国的TFR公司、德国的英飞凌(Infineon)公司以及韩国的ANT公司也相继推出了自己的FBAR产品。2002年,AgilentFBAR销量即突破2000万。Agilent在FBAR市场上的成功,带动了FBAR技术的迅速发展。在2005年,安捷伦公司因战略调整,将半导体事业部正式更名为Avago,并于次年突破了2亿只的出货量,这对于Avago而言,无疑是个值得纪念的里程碑。

安捷伦和Avago在FBAR滤波器市场上的巨大成功,迅速推动了FBAR技术的发展。之后的英飞凌、飞利浦、富士通Media Device公司和宇部兴产公司也相继推出自己的FBAR滤波器产品。德国市场调研机构Wicht Technologie Consulting(WTC)对未来几年FBAR的市场前景做出了非常乐观的估计。

FBAR滤波器工作原理

FBAR是一种基于体声波(BAW)的谐振技术,它是利用压电薄膜的逆压电效应将电能量(信号)转换成声波,从而形成谐振。

逆压电效应

如图所示,当一直流电场加于材料的两端时,材料的形变会随着电场的大小来改变,而当此电场的方向相反时,材料的形变方向也随之改变。"当有一交流电场加入时,材料的形变方向会随着电场的正及负半周期作收缩或膨胀的交互变化"这种称之为逆压电效应。

FBAR谐振器的典型结构图

FBAR谐振器的典型结构图

与SAW不同,这种振动发生于压电材料的体腔内,因此能承受更大的功率。这也是FBAR技术优于SAW的一个原因。

压电薄膜层在交变电场下产生的振动

压电薄膜层在交变电场下产生的振动

这样的振动会激励出沿薄膜厚度方向(C轴)传播的体声波,此声波传至上下电极与空气交界面反射回来,进而在薄膜内部来回反射,形成震荡。当声波在压电薄膜中传播正好是半波长的奇数倍时形成驻波震荡。

V=f*λ=f*2d,由于声波波长比电磁波短得多,因此,给点频率下由声波形成的谐振器将比由电磁信号形成的谐振器小几个数量级,d为压电层厚度,可知一般压电层厚度在几个微米以下,SAW工艺中叉指电极的指宽与间隙与工作频率成反比,增加其光刻难度,限制其使用频率。

声波在上下界形成串联谐振

声波在上下界形成串联谐振

在某交变电压V(fs)作用下,其极化向量P与电场E同相位,声波在上下界形成串联谐振,此时体声波谐振器的电学阻抗呈最小值。

在某交变电压V(fp)作用下,其极化向量P与电场E反相位,声波在上下界形成并联谐振,此时体声波谐振器的电学阻抗呈最大值。频率fp处声波损耗最小因此该声信号能顺利传输通过。

用以表征体声波谐振器性能的参数,除了上面所述的谐振频率f(fs,fp)之外,还有有效机电耦系数Keff2和品质因数Q,Keff2和Q分别定义为:

有效机电耦合系数Keff2用来表示体声波谐振器串联谐振频率fs和并联谐振频率fp的相对频率,同时也表示薄膜体声波谐振滤波器的带宽,Keff2越大,则谐振器构成的滤波器的带宽也越大,Keff2主要由压电薄膜的材料参数决定。

品质因素(Q)可用来判断谐振器声波损失的情形;主要有两个原因会造成声波的损失:

第一是薄膜本身品质的好坏。一般来说,成长品质不好的薄膜会有高应力、高密度的晶界以及大量的缺陷和杂质,这些缺陷都会造成声波的散射,因而减低品质因素。而高声波波速的材料,由于声波在传递时不易被吸收,因此有较高的品质因素。

第二是薄膜的表面粗糙度。电极和压电薄膜表面粗糙度大,会造成声

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top