基于PMAC控制卡的激光扫描尺寸测量系统
时间:01-24
来源:互联网
点击:
3.3 PLC程序的设置
PMAC是一个多任务的计算机应用系统。它除了能通过各种设置和运动程序完成高精度的定位和对复杂运动的控制任务外,还可分时执行多类其他任务,并根据任务的实时性要求,分配任务的优先级,高优先级的任务会打断低优先级的任务。PLC程序是PMAC所支持的用户程序之一,在任务优先级上处于最末的后台处理级。它可在用户的主机上编写,之后下载到PMAC上执行。与PMAC支持的另一种优先级较高的用户程序——运动程序相比。PLC程序没有运动语句,其在功能上与可编程逻辑控制器非常类似。
在该应用中,PLC程序的任务是判断是否发生位置捕获,如发生,则将其读人数组中,并对捕获的位置进行计数。之所以要将值读入数组中,是因为由于激光扫过被测物边缘时会由于边缘的反射产生抖动,以致采集到的数据多于1个,为防止后面的数据冲掉前面的数据,故将扫过一个边缘产生的数据放入数组中。
可用的PLC程序如下:
在程序中m203指向编码器2的位置捕捉寄存器;m217指向编码器2的位置捕捉状态标志位;m33指向P变量220,这是数组第一个元素的位置;m34指向m33的低12位,这样就可操作m33,使其在读人捕捉位置后指向下一个P变量。
4 测量系统特性初探
为研究系统的测量性能,以20mm标准量块为被测物,在上述系统上进行了一系列测量实验。实验结果通过上位机用Vc++编写的程序进行采集、存储和分析。与PMAC的通信是利用Delta-tau公司提供的动态连接库PComm32.dll完成的。由于C++语言对数值计算和图表输出的支持较少,程序采用与Matlab混合编程的方式来完成分析工作,即采用了调用Mat-labCOM服务器的方式,实现对Matlab函数的调用。这一编程方式也可在其他语言中实现。
在测量过程中,被测物的两个边沿都以两种方式被定位,即从亮到暗和从暗到亮,且每次实验的样本数都不少于300。也就是说,每次的实验结果均包含4个数据组,分别记作Q_L(代表前边沿,从亮到暗),Q_A(代表前边沿,从暗到亮),H_L(代表后边沿,从亮到暗),H_A(代表后边沿,从暗到亮),且每组数据的个数不少于300。由于测量系统本质上是通过对边缘的定位来进一步完成尺寸测量的,所以在以下分析中仅就边缘定位的系统特性作一简要说明。
图3为1次实验的结果,该实验所用光栅尺的每一计数代表0.1μm。
图3所示数据的数字特征如表1所示。
从图3可见,前边沿测量数据与时间呈明显的线性关系,这一特点在其他实验中也有明显的体现。依据变值系统误差的判别方法可知,这一特性可看作是一种变值系统的误差。变值系统误差的消除有多种方式,这里采取的思路是首先通过大量实验找到一定的经验函数,以刻画这种误差,之后则可依据这个函数通过补偿的办法消除误差,从而提高系统精度。表1最后一行括号内的数字就是通过测量序列中一元回归分析,剔除时间影响后得出的值。值得注意的是,测量数据和时间的这种相关性并不是十分稳定,它受到其他实验环境因素的影响,即适用于某个系统的补偿函数。通常当系统参数变化时,补偿函数就不再适用了。要在实际测量中通过这种方法提高精度,需要针对具体的情况通过实验完成。另外,可以看出,对同一边的两组数据,标准差有一定差异,这在其他实验数据组中也是普遍现象,可以考虑采用精度较高的数据组来计算尺寸值,即用H_L和Q_A来计算。
5 结语
在由PMAC控制的运动平台上,可以利用PMAC的位置捕获功能和在其上运行的PLC程序来方便的构建激光扫描尺寸测量系统。通过与上位机的软件配合,该系统可实现对一般工件尺寸的快速、高效、非接触测量,其精度可以满足绝大多数的应用场合。通过进行多次测量实验,可得到与时间相关的变值系统误差经验函数,从而进一步提高精度。
PMAC是一个多任务的计算机应用系统。它除了能通过各种设置和运动程序完成高精度的定位和对复杂运动的控制任务外,还可分时执行多类其他任务,并根据任务的实时性要求,分配任务的优先级,高优先级的任务会打断低优先级的任务。PLC程序是PMAC所支持的用户程序之一,在任务优先级上处于最末的后台处理级。它可在用户的主机上编写,之后下载到PMAC上执行。与PMAC支持的另一种优先级较高的用户程序——运动程序相比。PLC程序没有运动语句,其在功能上与可编程逻辑控制器非常类似。
在该应用中,PLC程序的任务是判断是否发生位置捕获,如发生,则将其读人数组中,并对捕获的位置进行计数。之所以要将值读入数组中,是因为由于激光扫过被测物边缘时会由于边缘的反射产生抖动,以致采集到的数据多于1个,为防止后面的数据冲掉前面的数据,故将扫过一个边缘产生的数据放入数组中。
可用的PLC程序如下:
在程序中m203指向编码器2的位置捕捉寄存器;m217指向编码器2的位置捕捉状态标志位;m33指向P变量220,这是数组第一个元素的位置;m34指向m33的低12位,这样就可操作m33,使其在读人捕捉位置后指向下一个P变量。
4 测量系统特性初探
为研究系统的测量性能,以20mm标准量块为被测物,在上述系统上进行了一系列测量实验。实验结果通过上位机用Vc++编写的程序进行采集、存储和分析。与PMAC的通信是利用Delta-tau公司提供的动态连接库PComm32.dll完成的。由于C++语言对数值计算和图表输出的支持较少,程序采用与Matlab混合编程的方式来完成分析工作,即采用了调用Mat-labCOM服务器的方式,实现对Matlab函数的调用。这一编程方式也可在其他语言中实现。
在测量过程中,被测物的两个边沿都以两种方式被定位,即从亮到暗和从暗到亮,且每次实验的样本数都不少于300。也就是说,每次的实验结果均包含4个数据组,分别记作Q_L(代表前边沿,从亮到暗),Q_A(代表前边沿,从暗到亮),H_L(代表后边沿,从亮到暗),H_A(代表后边沿,从暗到亮),且每组数据的个数不少于300。由于测量系统本质上是通过对边缘的定位来进一步完成尺寸测量的,所以在以下分析中仅就边缘定位的系统特性作一简要说明。
图3为1次实验的结果,该实验所用光栅尺的每一计数代表0.1μm。
图3所示数据的数字特征如表1所示。
从图3可见,前边沿测量数据与时间呈明显的线性关系,这一特点在其他实验中也有明显的体现。依据变值系统误差的判别方法可知,这一特性可看作是一种变值系统的误差。变值系统误差的消除有多种方式,这里采取的思路是首先通过大量实验找到一定的经验函数,以刻画这种误差,之后则可依据这个函数通过补偿的办法消除误差,从而提高系统精度。表1最后一行括号内的数字就是通过测量序列中一元回归分析,剔除时间影响后得出的值。值得注意的是,测量数据和时间的这种相关性并不是十分稳定,它受到其他实验环境因素的影响,即适用于某个系统的补偿函数。通常当系统参数变化时,补偿函数就不再适用了。要在实际测量中通过这种方法提高精度,需要针对具体的情况通过实验完成。另外,可以看出,对同一边的两组数据,标准差有一定差异,这在其他实验数据组中也是普遍现象,可以考虑采用精度较高的数据组来计算尺寸值,即用H_L和Q_A来计算。
5 结语
在由PMAC控制的运动平台上,可以利用PMAC的位置捕获功能和在其上运行的PLC程序来方便的构建激光扫描尺寸测量系统。通过与上位机的软件配合,该系统可实现对一般工件尺寸的快速、高效、非接触测量,其精度可以满足绝大多数的应用场合。通过进行多次测量实验,可得到与时间相关的变值系统误差经验函数,从而进一步提高精度。
传感器 半导体 三极管 总线 ARM Linux DSP 编码器 电路 PLC 相关文章:
- 传感器技术中的阻抗测量方法(03-23)
- 电桥测量基础(06-10)
- 适用于微型仪器的精密电容传感器接口(09-06)
- 基于PIR的移动检测系统的实现(11-03)
- 基于霍尔传感器的直流电机转速测量系统设计(11-14)
- NPXI智能传感器的TPMS系统设计(11-29)