微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 具速度和低相位噪声优势的信号发生器

具速度和低相位噪声优势的信号发生器

时间:01-20 来源:互联网 点击:
测试仪器制造商面临着一项挑战,即必需努力提供领先新兴技术一步的性能。这项任务尽管看起来很困难,不过,许多测量设备供应商通过与它们的设备和组件供应商以及客户密切合作,配合最新测试要求,仍取得了成功。对频率合成器而言,要求之一是快速的频率转换,此外是低相位噪声。一般来说,要在仪器中同时实现两者是很困难的。但新型的合成信号发生器Panther 2500系列具有出色的相位噪声性能和闪电般的转换速度,在这方面居领先地位。Panther 2500系列包括了4个模型,分别涵盖100kHz到8GHz、100kHz到 20 GHz、100kHz到 26.5 GHz以及 100kHz到 40 GHz四个频带,每一个都在全频带范围内具有0.0001 Hz的精细频率分辨率。 这些信号源可通过两种不同的结构予以提供,即bench-top (完全前板控制) 和自动测试设备(ATE)应用(背板输出)。

这种新式的测试信号发生器采用了Gigatronics公司正在申请专利的“累积高频反馈”(Accumulative High Frequency Feedback,AHFF)技术来实现低单边带(SSB)偏移相位噪声性能,同时保持很快的频率转换速度。这些新式的信号发生器具有高稳定度时基(high stability time base)、调频(FM)、高速脉冲/方波调制(PM)、调幅(AM)以及高输出功率等标准性能,为研发(R&D)和制造环境中的CW、调制、扫频和快速频率转换等应用提供了出色的测试解决方案。

频率合成器按照它是具有直接合成还是间接合成架构可分为两类。直接合成器能够利用模拟方法(混频、倍频、分频和滤波)或直接数字合成(DDS),也可以是二者相结合。直接频率合成器具有出色的性能,但往往体积笨重,价格高昂,而且功耗高,可靠性差。

而2500信号发生器这类合成器一般都采用间接合成架构。这种架构利用信号转换路径锁相环(PLL),较之直接合成架构成本较低,也更简单,故其尺寸也较小,功耗较低。不幸的是,为了满足军用和大规模测试应用的高性能要求,这类合成器常常需要多个PLL,有时高达8到10个,结果,转换速度很慢,设计也十分复杂。





单边带(SSB)相位噪声定义为,在给定频率偏移1Hz带宽内的噪声功率与载波信号功率之比。

在设计良好的PLL中,相位噪声分布作为载波偏移的函数,包含了两个截然不同的部分。第一部分是一个基准(pedestal),从载波延伸到环路带宽,伴有自激振荡器噪声。第二部分通常以20dB/10倍频的速度单调下降,最终达到噪声基底。上述只是对用于这种目的PLL中相位噪声的简单描述。

过去数年间,为使第一部分的基准不大于理论限值,众多工程师进行了大量的努力,这一限值由参考噪声源乘以输出和参考频率的比值来决定。这一比值应尽可能低,这一点非常重要。一般是利用带有分频器的多个PLL来实现。这种方案能够提供良好的相位噪声,但增加了复杂些和成本。

在基于PLL的合成器架构中,相位噪声主要和PLL的输出频率与输入频率(或参考频率)之比值成比例。通过采用具有最低相位噪声的频率尽可能高的参考源,可以实现良好的输出相位噪声,因为给定输出频率的倍增因子(N)被最小化。不幸的是, N值低意味着很难获得精细的频率分辨率。要解决这一难题,同时又仍然保持很低的相位噪声,需要用到小数N和sigma-delta系统。

不过,这类系统的PLL必须具有比较窄的环路滤波器带宽,以防止杂散信号单边带通过导致转换速度的减慢。

AHFF技术

由Gigatronics公司工程师开发的AHFF技术,克服了小数N和sigma-delta系统的局限性,Panther 2500系列合成器即采用了这一技术,在单环路中获得了很低的N值,和非常精细的分辨率(图2)。这种方案采用了带有驱动PLL的变量的高频参考源,可通过把几种低噪声技术巧妙结合起来予以实现。PLL使用了一种新颖的高频预分频技术,相比传统的PLL合成方法,对于给定的相位噪声电平,可使输出频率与参考频率之比值相当低。

Panther 2500系列中,PLL频率步进和参考调谐的划分被非常谨慎地计算。目的在于力图保持大PLL带宽,同时提供高性能信号发生器所需的足够的杂散单边带抑制。必须注意到,更大的环路带宽对频率转换速度和相位稳定时间(settling time)都很有好处。需小心地技巧处理双调谐算法控制这些参数,以同时实现信号纯净度和大环路带宽。

较之传统设计,Panther 2500系列发生器中的相位检测器工作在高频下。这些信号发生器中的可调振荡器是一种工作在4 到10 GHz范围内的YIG调谐振荡器。其信号的一部分由小数预置分频器(Prescaler)处理,这样,相位检测器的信号在频率上接近参考频率。为了使YIG振荡器稳定,相位检测器把两个信号间的相位差馈入到环路电路和YIG振荡器中。高频参考源和小数预置分频器都依赖算法进行调谐,通过能确保相位快速稳定的足够宽的带环为杂散信号抑制提供正确的条件。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top