微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 电子产品辐射发射的抑制

电子产品辐射发射的抑制

时间:08-31 来源:互联网 点击:
2.2共摸电流辐射的基本驱动模式

共模电流辐射实际上都是由差模源(有用信号源)驱动产生的,可大致分为两种基本驱动模式:电流驱动模式和电压驱动模式。  

1)电流驱动模式  

图1是电流驱动模式的示意图。图1(a)中UDM是差模电压源,设备内部有很多这样的源,例如各种数字信号电路、高频振荡源等等,ZL为回路负载,IDM为回路负载的差模电流,该电流流过AB两点间的回流地(例如印制板的地线),回到差模源。如AB间存在一定的电感LP,则产生压降为  






这里UCM就是产生共模辐射的驱动源。要产生辐射,除了源以外还必须有天线。这里的天线有两部分组成,一部分是由A点向左看的地线部分,另一部分是由B点向右看的地线部分和外接电缆。其组成的辐射系统的等效电路如图1(b)所示,这实际上是一付不对称振子天线。流过天线的电流即为共模电流,可用下式表示  




由于共模电流ICM是由差模电流IDM产生的,所以这种模式称电流驱动模式。以下举二例说明电流驱动产生的共模辐射。  

例1:在印制电路板上为了把数字部分和模拟部分隔离,常把地分割成数字地和模拟地。如果这两部分之间有信号联系,如图2所示,并且数字地和模拟地的连接部分AB比较细长,存在一定电感,则差模电流IDM将在AB连接线的电感上产生共模驱动电压源,从而引起共模辐射,天线一部分是数字地,另一部分是模拟地和外接地线。  

例2:印制电路板的地通过接地导线与机壳相连,如图3所示。印制板上有信号线与机壳贴近,于是差模源VDM通过分布电容C耦合到机壳上,引起差模电流,该电流通过机壳和接地线又回到印制板的差模源。如果接地线存在一定的电感L,则差模电流在L上产生电压降VCM,成为共模驱动电压,从而引起共模辐射。这时天线的一部分是外接地线,另一部分是机壳。这种辐射常发生在以下情况,例如设备内部的地址线、数据线等扁平电缆贴近机壳,分布电容较大,印制板和机壳之间的连接线细长或接触不良等等。   

2)电压驱动模式  

电压驱动模式的原理如图4所示,图中差模电压源VCM直接驱动天线的两个部分,即上金属部分和下金属部分,从而产生共模辐射,共模辐射电流ICM为  






式中C为上下两部分金属之间的分布电容。  

图5是电压驱动模式的一个实例。图中Q是大功率的开关管,Q可看成是差模电压源UDM,共模电流ICM的途径是由Q通过开关管和散热片之间的分布电容Cd到达散热片,散热片是共模天线的一个极。然后以空间位移电流的形式,即通过C A到达外部接线,外部接线是天线的另一个极,共模电流再由印制板地回到Q。



3、产生共模电流辐射的条件  

产生共模电流辐射的条件一是要有共模驱动源,二是要有共模天线。任何两个金属体之间只要存在射频电位差就构成共模辐射系统,两个金属体分别是它的不对称振子天线的两个极。射频电位差即为共模驱动源,它通过不对称振子天线向空间辐射电磁能量。当频率达到MHz级时nH的小电感和pF级的小电容都将产生重要影响。两个导体连接处
的小电感能产生射频电位差,例如图2中的数字地和模拟地之间的连接线的小电感,图3中机壳与印刷板之间连接线的小电感等都是产生共模驱动源的根源。没有直接连接点的金属体也可能通过小电容变成天线的一部分,例如图5中的散热片与开关管是绝缘的,但可以通过它们之间的小电容在射频频率上连接起来,构成共模天线的一部分。  

共模天线的一个极必定是设备的外部连接线,另一个极可以是设备内部印刷板的地线、电源面、机壳、散热片、金属支撑架等等。当天线二个极的总长度大于λ/20后,天线的辐射才有可能有效。当天线长度与驱动源谐波的波长符合下式时天线发生谐振,辐射能量最大。  



4、共模电流辐射的抑制方法  

1)共模滤波  

在设备的电源输入端口接共模滤波器。电磁兼容使用的电源滤波器往往把共模和差模滤波装在一起。滤波器金属外壳和屏蔽机箱紧密搭接,搭接面积越大越好。  

在信号线输入输出端口串接共模滤波器,滤波器良好接地。如有可能最好直接采用带滤波器的连接器,这种连接器的插座上每个引脚都带有由铁氧体磁珠和穿心电容组成的滤波器。  

2)采用屏蔽电缆、屏蔽连接器  

共模滤波器通常是低通性质的,只能用在传输频率较低的输入输出信号线上。如果要求传输信号的速率较高,边缘较陡,则串接滤波器就可能把有用信号的高频部分也滤掉,从而影响信号的正常传输。这时就只能采用屏蔽的方法,即采用屏蔽电缆和屏蔽连接器,并要求它们的屏蔽层和机箱的屏蔽层保持电连续性和一致性。具体要求电缆屏蔽层和连接器插头的金属外壳要有3600的完整搭接,不能出现"猪尾巴"现象。插头的金属外壳、插座金属外壳以及机壳也应有良好的搭接。  

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top