微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 人体生物电阻抗的脉冲式检测方法及其应用

人体生物电阻抗的脉冲式检测方法及其应用

时间:02-25 来源: 点击:

1、引言?

  在人体成分的研究中,测量人体生物电阻抗值可以得到水分、脂肪等与人体健康状况有关的信息,对人身体状况的监视、疾病的早期诊断有着重要的意义[1]。

  人体组织的电阻抗特性比一般物体要复杂得多,最明显的特点是电阻抗的值会随着测量频率的变化而变化。这是由于人体细胞内液体组织不是简单的表现为电阻的特性,细胞内水分与细胞膜的作用更多是以电容的特性存在。

  图1所示为人体皮肤电阻抗的等效电路模型 [2]。其中R1为活性皮肤中的离子电阻;R2是基于角质层中离子迁移率的电阻;CPE是恒定相位角元件,RPOL、CPOL为其两个参数,用来描述皮肤角质层中的介电弥散和损耗[3][4]。

                      图1 人体皮肤的等效电路模型

  该模型的总的导纳如(1)式所示:

  其中:

  显然,CPE环节的存在,使得人体的生物电阻抗原则上无法用简单的R、C元件所组成的集总参数电路模型来描述。

  传统的人体生物电阻抗检测采用单频法,即只在一个固定频率下,利用正弦波信号进行测量,一般只测量电阻抗的模,所以实现简单,很适合在便携仪器上推广。但是,单频法无法将CPE的影响表现出来,测量结果容易出现较大的误差。为了能够更准确地得到人体生物电阻抗的信息,需要有一种可同时检测多个频率点电阻抗的方法。

  脉冲式检测法是近几年发展起来的一种无损检测方法。利用脉冲信号中所含有的多谐波频率成分,能够比正弦波信号激励提供更多的信息,并拥有更快的响应速度。本文研制了一种以现场可编程门阵列(FPGA)为核心的脉冲式检测系统,利用该系统,对电阻抗的脉冲式检测方法的可行性进行了分析研究,在此基础上,对人体皮肤水分的脉冲式检测方法进行了实验分析。

2、电阻抗的脉冲式测量原理

  
方波脉冲信号作为电阻抗测量的激励源,波形稳定,易于同数字电路结合实现,且具有较宽的频谱,在防止被测单元极化的同时,能够得到多频率点的信息。

                      图2 理想方波和实际方波的时域波形

                     图3 理想方波和实际方波的频谱图

  图2、3中的细实线为理想方波的时域波形及频谱,图2中的粗实线、图3中的虚线分别表示实际方波信号的时域波形及频谱。可以看到,与理想情况相比,实际方波信号在时域上具有一定的上升时间,且相应频率分量的幅值衰减得更快。以理想方波的频谱为基准,实际波形中所含的频率分量越多,上升时间就越短。因此,在对信号的采样中,就要采集尽可能多的频率成分,以减小高频幅值衰减对电阻抗测量的影响。为此,本文采取以下步骤:①对敏感电极施加频率为f0的脉冲信号,进行响应信号的采集与分析,得到被测对象的电阻抗谱;②实时调节方波激励信号的频率,使其增加为nf0,同时进行响应信号的采集与分析,得到该激励频率时的电阻抗谱。③对两次测得的电阻抗谱按照n倍频进行叠加。

                      图4 测量原理简图

  图4所示为本文采用的测量原理简图。其中虚线框内的电路为人体皮肤电阻抗等效电路模型,Rref是参考电阻。

  电平转换电路将输入的脉冲信号Uin转换为测量需要的脉冲激励信号Ui,Uresp为输出信号。每次测量时要对Ui和Uresp进行一次同步采样,利用(2)式计算电阻抗值:

  对采样结果进行FFT后,即可求得由直流量及激励脉冲信号基频开始的各次谐波处的Z值,从而绘制出相应的电阻抗谱图。

  本文利用软/硬件协同设计的方法研制了基于FPGA的脉冲式检测系统[5],利用FPGA丰富的逻辑资源,实现对输入信号的控制、激励与输出信号的同步采样,并且具有一定的可重配置能力。

3、电阻抗谱测量实验

3.1 Randles单元模型电路


  为了验证脉冲式检测系统对电阻抗谱图的测量能力,首先对图5所示的Randles单元模型电路[6]的电阻抗谱进行了测量。其中,R=8.11kΩ,C=2200 pF,参比电阻为Rref=8.08kΩ(全部元件参数由HP 4282A LCR分析仪实际测量得到)。

                     图5 Randles单元模型示意图

  设激励信号的频率为200Hz,由脉冲式检测系统以4.8MHz的采样频率对Randles单元模型电路的激励信号及输出采样信号进行采样及FFT处理,可得以200Hz为基频直至4.8MHz间各次倍频成分的频谱图。

  绘出的电阻抗谱图如图6所示。图中实线部分为根据R、C及Rref参数计算所得的理论谱图,小圆点部分为用脉冲式检测系统测得电阻抗谱图(零频及1-299奇次倍频)。由图6可以看出,测得的Randles模型的电阻抗谱图与理论谱图吻合得很好,只有在高频段有些发散,这是由于随着谐波的倍频数增加,高频幅值衰减增加,其所携带能量急剧下降,结果受到扰动的机率也随之增大。

                     图6 Randles单元模型电阻抗谱图

  通过上述对Randles模型电阻抗谱的测量可知,脉冲式检测系统能检测出RC等效电路模型的电阻抗谱,该系统用于电阻抗谱的测量是有效的。电路中分布电容引起虚阻抗相对较大的变化。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top