USB 3.0物理层的一致性测试(上) -- 发送端测试简介
时间:08-05
来源:互联网
点击:
越测越开心
USB3.0 简介
USB3.0的推出使用户在1分钟内从移动硬盘拷贝完成高清电影成为可能。该技术由英特尔(Intel),微软,HP,NEC,NXP半导体,TI等公司组成的USB3.0推广组共同开发而成。传输速率达到5Gbps,是USB2.0的十倍, USB3.0接口向下兼容USB2.0和USB1.1,从下图可以看出USB3.0新增了5条新的引脚,两条数据发送引脚,两条数据接收引脚,一个引脚地。在进行5Gbps数据高速传输时,主机与外设以全双工方式传输,同时收发数据,区别于以前USB2.0半双工传送,只能单向传输数据,不能同时收发。在物理接口排列时,新的引脚排列在现有引脚的后方,USB3.0以蓝色作为背景色以区别于现有的USB2.0黑色背景色。
(摘自USB3.0 Spec Rev1.0)
USB-IF(USB Implementers Forum)是管理USB3.0规范的组织,USB-IF 的成员可以利用PIL(Platform Interoperability Lab) 互操作平台实验室验证其设计。PIL 实验室为USB 开发者提供了Host 和Device 一致性测试,确保设备能够正确的进行USB3.0 电气和链路层的信号正常交互。
USB3.0物理层一致性测试挑战?
在USB3.0的一致性测试中,接收端的测试为必测项目,所以还需要带抖动注入能力的信号源。在USB3.0的规范中,HOST和Device的参考时钟是异步的,加上注入扩频时钟(SSC),将会引入越来越多的互连方面的问题;发送端将5G的信号送出,需要经过参考通道,参考线缆,在接收端的眼图已经闭合,这就需要引入均衡技术:如在发端信号加入预加重,以及收端使用CTLE均衡来获得张开的眼图以进行测试;为了模拟信号经过连接器,线缆和通路的测试环境,需要引入参考线缆和参考通道,但是参考线缆和参考通道通常无法获取,所以需要在测试的时候要根据其性能参数对其进行软件通道仿真,以满足测试要求。
发送端测试
标准的发送端测试点是在TP1,测试DUT的信号经过参考线缆和参考通道,在TP1处送入测试设备进行测试。在TP1处测试时,测试环境需要有参考线缆,参考测试通道等实物,这对于测试者来说是一个比较麻烦的问题,因为它们不容易获取甚至是无法获取。于是另外一种方法是在TP1’处获取波形,然后用等效参考线缆和等效参考测试通道的模型(滤波器)去作用在获取波形上以达到类似实物的效果。
(摘自USB 3.0 Electrical Compliance Methodology White paper Rev0.5)
工欲善其事,必先利其器---夹具方案简介
USB3.0测试的夹具提供了A-PLUG,A-RECEPTACLE,B-RECEPTACLE与校准套件并附有一个短USB3 cable。用户可以使用该夹具套件进行发送端,接收端,线缆的全套测试;用户可以使用校准夹具来测试夹具的插入损耗,精确的进行夹具去嵌的测试。
对于HOST/Device的测试,都要求使用的夹具使探测点与被测器件接口的距离尽可能的短,以减少线缆损耗。Device的测试夹具匹配方案是使用A-RECEPTACLE型夹具与USB3.0 短连接线缆;HOST的测试有两种类型夹具匹配方案:第一种方案是使用A-PLUG型夹具(该方案为推荐方法);第二种是使用B-RECEPTACLE型夹具与USB3.0 短连接线缆(该方案会引入短线缆路径损耗误差)。
下图为带A-PLUG夹具与B-RECEPTACLE夹具Host测试方案的比较,后者需要在器件接口通过一段短USB3.0 cable(13cm)与被测器件进行连接,因而在测试中必然引入线缆的损耗。从图中可以看出,短线缆的引入导致信号的幅值损耗了近7%,并且增加了500fs的随机抖动的和2.5ps的确定性抖动。
一致性测试以外的调试验证
一致性测试仅仅是完成了规范的强制测试项目(Normative Testing),在USB3.0规范里面还有许多可选项目(Informative)的测试,这些测试项目所能体现的信息对于需要进行芯片级测试的用户来说是非常有用的,对于调试,验证器件有非常大的帮助。
由于通道对信号的衰减很明显,因此USB3.0在信号接收端需要采用对信号眼图补偿的技术:均衡. 在调试验证过程中,用户需要自定义均衡来对整个链路做完整分析,可以根据具体的器件情况,在不同的实验环境和不同的测试要求下,改变均衡参数或者不同类型的均衡方式以验证其对系统性能的影响,从而寻求器件最佳均衡参数组合。
对于芯片级用户,去嵌(de-embed)也是其关注的内容,为了得到精确的测试结果,可以使用校准夹具来测试夹具的插入损耗,精确的进行夹具去嵌的测试;同时也可以对通道,连接器的S参数进行测试,去嵌至芯片pad。
在调试过程中,用户需要知道自己的器件所能工作的最坏情况,例如可以通过最大为多少距离的线缆保持功能正常,而此时一致性测试所提供的参考线缆,参考通道并不能满足调试的需求,这就需要用户自己做通道线缆仿真找到答案。
USB3.0 简介
USB3.0的推出使用户在1分钟内从移动硬盘拷贝完成高清电影成为可能。该技术由英特尔(Intel),微软,HP,NEC,NXP半导体,TI等公司组成的USB3.0推广组共同开发而成。传输速率达到5Gbps,是USB2.0的十倍, USB3.0接口向下兼容USB2.0和USB1.1,从下图可以看出USB3.0新增了5条新的引脚,两条数据发送引脚,两条数据接收引脚,一个引脚地。在进行5Gbps数据高速传输时,主机与外设以全双工方式传输,同时收发数据,区别于以前USB2.0半双工传送,只能单向传输数据,不能同时收发。在物理接口排列时,新的引脚排列在现有引脚的后方,USB3.0以蓝色作为背景色以区别于现有的USB2.0黑色背景色。
(摘自USB3.0 Spec Rev1.0)
USB-IF(USB Implementers Forum)是管理USB3.0规范的组织,USB-IF 的成员可以利用PIL(Platform Interoperability Lab) 互操作平台实验室验证其设计。PIL 实验室为USB 开发者提供了Host 和Device 一致性测试,确保设备能够正确的进行USB3.0 电气和链路层的信号正常交互。
USB3.0物理层一致性测试挑战?
在USB3.0的一致性测试中,接收端的测试为必测项目,所以还需要带抖动注入能力的信号源。在USB3.0的规范中,HOST和Device的参考时钟是异步的,加上注入扩频时钟(SSC),将会引入越来越多的互连方面的问题;发送端将5G的信号送出,需要经过参考通道,参考线缆,在接收端的眼图已经闭合,这就需要引入均衡技术:如在发端信号加入预加重,以及收端使用CTLE均衡来获得张开的眼图以进行测试;为了模拟信号经过连接器,线缆和通路的测试环境,需要引入参考线缆和参考通道,但是参考线缆和参考通道通常无法获取,所以需要在测试的时候要根据其性能参数对其进行软件通道仿真,以满足测试要求。
发送端测试
标准的发送端测试点是在TP1,测试DUT的信号经过参考线缆和参考通道,在TP1处送入测试设备进行测试。在TP1处测试时,测试环境需要有参考线缆,参考测试通道等实物,这对于测试者来说是一个比较麻烦的问题,因为它们不容易获取甚至是无法获取。于是另外一种方法是在TP1’处获取波形,然后用等效参考线缆和等效参考测试通道的模型(滤波器)去作用在获取波形上以达到类似实物的效果。
(摘自USB 3.0 Electrical Compliance Methodology White paper Rev0.5)
工欲善其事,必先利其器---夹具方案简介
USB3.0测试的夹具提供了A-PLUG,A-RECEPTACLE,B-RECEPTACLE与校准套件并附有一个短USB3 cable。用户可以使用该夹具套件进行发送端,接收端,线缆的全套测试;用户可以使用校准夹具来测试夹具的插入损耗,精确的进行夹具去嵌的测试。
对于HOST/Device的测试,都要求使用的夹具使探测点与被测器件接口的距离尽可能的短,以减少线缆损耗。Device的测试夹具匹配方案是使用A-RECEPTACLE型夹具与USB3.0 短连接线缆;HOST的测试有两种类型夹具匹配方案:第一种方案是使用A-PLUG型夹具(该方案为推荐方法);第二种是使用B-RECEPTACLE型夹具与USB3.0 短连接线缆(该方案会引入短线缆路径损耗误差)。
下图为带A-PLUG夹具与B-RECEPTACLE夹具Host测试方案的比较,后者需要在器件接口通过一段短USB3.0 cable(13cm)与被测器件进行连接,因而在测试中必然引入线缆的损耗。从图中可以看出,短线缆的引入导致信号的幅值损耗了近7%,并且增加了500fs的随机抖动的和2.5ps的确定性抖动。
一致性测试以外的调试验证
一致性测试仅仅是完成了规范的强制测试项目(Normative Testing),在USB3.0规范里面还有许多可选项目(Informative)的测试,这些测试项目所能体现的信息对于需要进行芯片级测试的用户来说是非常有用的,对于调试,验证器件有非常大的帮助。
由于通道对信号的衰减很明显,因此USB3.0在信号接收端需要采用对信号眼图补偿的技术:均衡. 在调试验证过程中,用户需要自定义均衡来对整个链路做完整分析,可以根据具体的器件情况,在不同的实验环境和不同的测试要求下,改变均衡参数或者不同类型的均衡方式以验证其对系统性能的影响,从而寻求器件最佳均衡参数组合。
对于芯片级用户,去嵌(de-embed)也是其关注的内容,为了得到精确的测试结果,可以使用校准夹具来测试夹具的插入损耗,精确的进行夹具去嵌的测试;同时也可以对通道,连接器的S参数进行测试,去嵌至芯片pad。
在调试过程中,用户需要知道自己的器件所能工作的最坏情况,例如可以通过最大为多少距离的线缆保持功能正常,而此时一致性测试所提供的参考线缆,参考通道并不能满足调试的需求,这就需要用户自己做通道线缆仿真找到答案。
USB NXP 半导体 连接器 仿真 滤波器 泰克 示波器 相关文章:
- 采用CompactDAQ平台提高USB数据采集应用的性能(01-17)
- 基于FPGA的USB2.0虚拟逻辑分析仪的设计与实现(01-18)
- 高速串行数据链路的自动化一致性测试(04-15)
- 基于LABVIEW的USB接口多路高速数据采集系统的设计(11-24)
- 基于AVR USB接口的温度测量系统下位机设计(03-01)
- 理解下一代数据采集技术(05-12)