微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 基于LabVIEW的气体微流量测量虚拟仪器的开发

基于LabVIEW的气体微流量测量虚拟仪器的开发

时间:07-23 来源:互联网 点击:
虚拟仪器的软件设计及实现

系统软件采用模块化设计,可将不同测量内容设计成单独的功能模块。由主界面程序构成结构框架,各子模块分别完成一定的功能,在主界面程序或其它的子程序中调用。各功能模块间的独立性较强,一般都可单独调试、修改和移植。所以整个系统软件层次清晰、易于理解、便于修改、利于开发新功能。系统软件由气体压力的数据采集模块、温度的数据采集模块、活塞位移的数据采集模块、电机驱动和转速控制模块、压力补偿程序模块、测量数据的存贮和显示模块组成。图3为采用LabVIEW6.1开发的气体微流量测量虚拟仪器主界面。  



图3 气体微流量测量虚拟仪器主界面  

不确定度分析

整个仪器的不确定度由以下部分合成,现分别阐述。  

压力的测量不确定度

压力由电容薄膜规测量。根据国防科工委真空计量一级站对电容薄膜规的校准结果,压力测量的不确定度为0.8%。  

活塞位移和时间的测量不确定度

位移由编码器测量。编码器每输出4096个脉冲,活塞前进2mm,其分辨力为0.5μm。流量测量中活塞的最大行程为36mm(对应73728个脉冲)。将活塞移动位移设定为73728个脉冲(即36mm),测量编码器实际输出的脉冲数为73726。由测量结果可知,活塞位移的测量不确定度为  △L/L=(2×2)/(4096×36)=0.0027%  时间的测量直接取自工控机的时钟,其精度为0.001.s。在测量流量时,流量的有效测量时间大于100s。这样,时间测量的不确定度小于0.001%。  

变容室温度的测量不确定度

Pt100铂电阻温度传感器的测量精度为0.1K,实验室的温度约为23℃,则温度测量的不确定度约为0.04%。  

恒压控制效果

在参考室中充入104175Pa的N2,设置好各PID控制参数,通过小孔将流量引入双球校准系统,进行恒压调节。图4为PID调节结果。  



图4 恒压控制效果图  

由PID调节结果中知,变容室和参考室之间的压力差被控制到变容室压力的±0.004%之内,加上参考室内气体压力的静态波动(约为0.005%)后,变容室内气体压力的波动约为0.0.%。从以上的实验结果可知,整个流量计的相对合成标准不确定度为  


  
该不确定度远小于流量计的设计指标(2%)。  

结束语  

在该系统的设计中,通过选用高精度的测量元件和先进的测控方法,提高了流量的测量精度,延伸了流量的测量下限。虚拟仪器技术的应用,使气体微流量测量系统具有人性化的操作界面与易于操作的特点,提高了该系统的自动化程度、可靠性和维护性。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top