微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 射频工程师文库 > 在3G中应用MIMO技术

在3G中应用MIMO技术

时间:11-29 来源:互联网 点击:

成型

波束成型技术又称为智能天线(Smart Antenna),通过对多根天线输出信号的相关性进行相位加权,使信号在某个方向形成同相叠加(Constructive Interference),在其他方向形成相位抵消(Destructive Interference),从而实现信号的增益,参见图3。

\

图3 定向智能天线的信号仿真效果

当系统发射端能够获取信道状态信息时(如TDD系统),系统会根据信道状态调整每根天线发射信号的相位(数据相同),以保证在目标方向达到最大的增益;当系统发射端不知道信道状态时,可以采用随机波束成形方法实现多用户分集。

4 三种技术的优缺点及应用场景

空间复用能最大化MIMO系统的平均发射速率,但只能获得有限的分集增益,在信噪比较小时使用,可能无法使用高阶调制方式,如16QAM等。

无线信号在密集城区、室内覆盖等环境中会频繁反射,使得多个空间信道之间的衰落特性更加独立,从而使得空间复用的效果更加明显。

无线信号在市郊、农村地区,多径分量少,各空间信道之间的相关性较大,因此空间复用的效果要差许多。

对发射信号进行空时编码可以获得额外的分集增益和编码增益,从而可以在信噪比相对较小的无线环境下使用高阶调制方式,但无法获取空间并行信道带来的速率红利。空时编码技术在无线相关性较大的场合也能很好的发挥效能。

因此,在MIMO的实际使用中,空间复用技术往往和空时编码结合使用。当信道处于理想状态或信道间相关性小时,发射端采用空间复用的发射方案,例如密集城区、室内覆盖等场景;当信道间相关性大时,采用空时编码的发射方案,例如市郊、农村地区。这也是3GPP在FDD系统中推荐的方式。

波束成型技术在能够获取信道状态信息时,可以实现较好的信号增益及干扰抑制,因此比较适合TDD系统。

波束成型技术不适合密集城区、室内覆盖等环境,由于反射的原因,一方面接收端会收到太多路径的信号,导致相位叠加的效果不佳;另一方面,大量的多径信号会导致DOA信息估算困难。

5 MIMO技术在3G的应用

综合使用空间复用技术和空时编码技术,使得MIMO能够在不同的使用场景下都发挥出良好的效果,3GPP组织也正是因为这一点,将MIMO技术纳入了HSPA+标准(R7版本)。

出于成本及性能的综合考虑,HSPA+中的MIMO采用的是2×2的天线模式:下行是双天线发射,双天线接收;上行为了降低终端的成本,缩小终端的体积,采用了单天线发射。也就是说,MIMO的效用主要是用在下行,上行只是进行传输天线选择。

HSPA+中,MIMO规定了下行的Precoding预编码矩阵,包括4种形式:

● 空间复用(Spatial Multiplexing)。
● 空时块码(Space Time Block Coding)。
● 波束成型(Beam Forming)。
● 发射分集(Transmit Diversity)。

在实际使用中,由基站根据无线环境的不同自动选择使用。

在HSPA+上行方面,MIMO技术有两种天线选择方案,即开环和闭环。

● 开环方案即TSTD(时分切换传输分集),上行数据轮流在天线间交替发送,从而避免单条信道的快衰落,参见图4。

\

图4 开环天线选择方案

● 闭环方案中,终端必须从不同的天线发送参考符号,由基站进行信道质量测量,然后选择信道质量好的天线进行数据发送,参见图5。

图5 闭环天线选择方案

MIMO技术能够大大提高频谱利用率,使得系统能在有限的无线频带下传输更高速率的数据业务。作为MIMO技术的发明者,阿尔卡特朗讯首先提出将MIMO技术加入3GPP标准,并积极推动MIMO技术在HSPA+的应用。我们相信,MIMO技术必将在未来的移动网络中占据重要的位置。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top