微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 单电源运算放大器的设计考虑

单电源运算放大器的设计考虑

时间:10-26 来源:互联网 点击:
图10 (有偏压,但信号没有反相)所示。



图10. 对输入信号提供增益和偏压,该电路将输出偏置在远离电源电压的位置。

图4所示的反相配置通过保持共模输入电压不变来消除共模非线性,在满摆幅输入放大器中特别有用,因这些放大器的非线性是由共模输入的变化引起的(输入级从一个输入差分对过渡到另一个输入差分对)。

我们再关注一下输出级,因为,增益是负载电流的函数,轻载时有助于改善满摆幅放大器的谐波性能。放大器电压的偏移量也会影响失真,所有运算放大器在电压漂移量最小时都有助于改善性能(内部工作点不需偏移很大,保持在线性区域内)。放大器摆率大小与满功率带宽有关,同时也影响谐波失真。当放大器工作在满功率带宽以外时,相关的摆率限制会产生严重的非线性。

产生另一路电源

高性能、单电源运算放大器的应用越来越来普及,但要最大限度地提高性能,有时还必须选择双电源供电的放大器。由于双电源运算放大器的设计没有单电源设计的局限性,可选则的双电源供电产品更多。

从正电源获得负电源的方法非常多,开关型调节器最灵活,而电荷泵转换器则最简单、体积最小、价格最低。因为电荷泵使用外接电容(而不是电感)提供电压转换,所以在提供输入电压的整数倍电压(-VIN, +2VIN等)时效果最佳。输出电压一般没有稳压,如果负载电流相对较小时,输出电压可以非常接近输入电压的整数倍。

因为电荷泵的静态电流可以非常小,所以轻载时效率很高。如图11,电荷泵配置为产生一路负压,电压大小等于输入电压,但极性相反。通过引脚配置可以使内部振荡器频率为13kHz、100kHz或250kHz,允许设计人员在静态电流、电荷泵电容器尺寸或输出电压纹波等参数之间进行权衡。



图11. 简单、小巧、廉价的电荷泵可以轻松地从正电源产生负电源。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top