微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 单电源运算放大器的设计考虑

单电源运算放大器的设计考虑

时间:10-26 来源:互联网 点击:
图5)。共发射极输出放大器的输入、输出压降相对较低(集电极-发射极饱和电压,或称VCE(SAT)),但典型的射极跟随器输出与电源摆幅的差值大于VCE(SAT) (由电流源产生)与VBE (由输出晶体管产生)之和。



图5. 满摆幅输出级(a)共发射极结构,(b)标准输出级一般为射极跟随器。

因为双极型晶体管的VCE(SAT)取决于流过晶体管的电流,所以双极性运算放大器的输出摆幅与负载电流有关。由此可见,放大器虽然标称是满摆幅输出,但其输出级实际上并不能够达到满电源幅度。例如,MAX4122的负载电阻为100k,最大摆幅与正电源电压相差12mV,与负电源电压相差20mV。然而,负载为250时,摆幅只能达到正电源电压的240mV以内、负电源电压的125mV以内。

对CMOS输出级,双极型晶体管的集电极-发射极电压则对应于MOSFET的漏-源电压,漏-源电压是MOSFET导通电阻和沟道电流之积。因此,MOSFET输出级的电压摆幅也是负载的函数。

增益与负载的关系

满摆幅放大器的共发射极电路除了具有低输入-输出压差外,其它参数也与射随器不同。共发射极电路提供电压增益,输出阻抗相对较高;射随器则提供单位增益,输出阻抗较低。因此,满摆幅运算放大器通常提供一个输出节点,用于补偿,而标准运算放大器的补偿电路一般位于前一级。对于满摆幅运算放大器,由此产生的增益受负载电流的影响,使其驱动容性负载时不稳定。

这些满摆幅输出放大器的性能可通过仔细设计运算放大器加以改善,折衷办法是提高电源电流,比射随器输出级的运算放大器消耗更多的电流。MAX4122-MAX4129系列运算放大器在驱动容性负载方面性能优异(见表1),这类运算放大器驱动500pF时,满摆幅输入、输出稳定,可用于驱动终端匹配不好的线缆和模数转换器的容性输入级。由于能够驱动大容性负载,因此具有较好的大信号电压增益,即使是在重载情况下。

开环增益与输出摆幅

与所有运算放大器一样,满摆幅输出放大器的开环增益是输出电压摆幅的函数。因此,要评估满摆幅输出放大器,就必须给出指定电压、负载下的增益。Maxim正是以这种方法给出增益,而有些厂家的数据资料中没有这些数据。例如,某些运算放大器的开环增益可以达到106dB,驱动250负载时能够获得与电源电压相差125mV之内的摆幅,但无法同时保证这两个性能。例如,MAX4122-MAX4129数据资料在其“电气特性表” (图6)中明确给出了大信号电压增益和输出电压摆幅(见图6),这些器件的大信号电压增益随输出电压和负载变化的曲线见图7。



图6. 大信号电压增益应包括不同负载下的指标,输出电压摆幅也是驱动负载的函数。



图7. 满摆幅输出放大器增益随负载、输出电压摆幅变化的曲线图。

电荷泵运算放大器

MAX4162系列运算放大器采用一种创新方案的解决标准输出级提供满摆幅输出的问题。运算放大器采用典型的射随器输出级,但其内部电荷泵为输出级提供偏置电压,从而获得了满摆幅输出。电荷泵也给放大器的其它电路供电,因此,当输入级为标准的地感应结构时,输入可以在地与VCC之间变化。该系列运算放大器的技术参数如表1所示,提供200kHz带宽时,各器件吸收电流只有35μA (包括电荷泵)。放大器在保持低电源电流的同时,还可以驱动相对较大的20、500pF负载。

电荷泵的引入,放大器可以采用标准的输入、输出结构,所以这些放大器的性能优于满摆幅运算放大器。电荷泵运算放大器的共模抑制比非常高,单输入晶体管对儿不存在双差分对之间切换时所引起的失调电压变化问题。另外,即使在负载相对较大的情况下,其典型的射随器输出仍可保证较高的开环增益,同时,放大器即使在驱动大容性负载时也能保持稳定。

常见问题

单电源供电还使得噪声、偏置和失真问题变得比较严重。

噪声

单电源应用一般电压很低,低电压使设计人员必须降低噪声,以保持系统的信噪比。遗憾的是,低电压通常要求低功耗,而随着电源电流的降低,放大器噪声会增大。其它条件相同时,低噪声放大器的功耗较大。

估算运算放大器的噪声,需考虑所有噪声来源:输入电压噪声、输入电流噪声和由增益设置电阻引起的热噪声。图8给出了电压反馈运算放大器的噪声源。C1为运算放大器反相输入端的寄生电容,C2对高频时的噪声增益和信号带宽进行限制,R1/R2为标准增益设置电阻,R3用于平衡反相和同相输入端的电阻。



图8. 电压反馈运算放大器的主要噪声源。

在低频处,噪声增益为1+R2/R1 (图9)。噪声增益的第一零点在1/2R1C1,到达由C2产生的极点以前,以每十倍频程6dB的斜率递增;在极点1/2R2C2处,噪声增益变得平坦,等于1+C1/C2。随后,噪声增益曲线与放大器开环增益曲线相交,并开始以每十倍频程6dB的斜率衰减(放大器开环增益的标准单极点滚降)。



图9. 图8放大器噪声增益和开环增益图。

因为输入电压噪声、同相电流噪声和R3引起的噪声在整个闭环带宽内积分,并与电流噪声增益相乘,可以看出(根据噪声增益和开环增益图),通过选择低单位增益交越频率的运算放大器,使电路噪声最小化。对反相输入,由R1和R2引起的电流噪声和热噪声只在信号带宽(1/2R2C2)内积分。因为电流反馈运算放大器中没有电容C2,所以这类运算放大器的噪声只在整个闭环信号带宽内积分。

失真

适当的放大器环路增益能够使失真最小,否则在其输入-输出传输函数中将产生非线性。因为高频处放大器增益减小,所以其谐波失真增加。

给定频率时,如果运算放大器工作在线性区域,并且环路增益最大,就可以获得良好的谐波性能。这需要将输出偏置远离电源电压的位置,如图4 (信号反相并加入一个偏压)或

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top