高性能∑-Δ ADC的原理及应用
时间:09-03
来源:互联网
点击:
1 概述
MAX1403是一种18位、过采样的ADC芯片,它利用∑-Δ调制器和数字滤流器可实现真正的16位转换精度。在应用中,为了得到高输出的数据速度,可选择数字滤波因子,并可降低转换分辨率。而调制器的采样频率可作为最小功耗和最高输出数据速率选择的首选条件。
MAX1403能够提供具有独立编程(增益从1V/V~+128V/V)的三路真差动输入通道,并能补偿输入参数电压的直流失调。而这三路真差动输入通道还能组成五路伪差动输入通道。另外,该芯片还具有两个附加的差动校正通道,它能对增益和失调误差进行校正。
MAX1403 能够对所有输入信号进行处理,并通过串行数字接口向外提供转换结果。当主机时钟频率为2.4576MHz或1.024MHz时,片内数字滤波器能够对线路频率和有关谐波频率进行处理,并使这些频率的幅值为零。以使在无需外接滤波器的条件下也能获得较好的滤波效果,同时,这也有助于提高输出端数字信号的质量。
MAX1403的主要特点如下:
●分辨率为18位;
●具有8个寄存器;
●功耗低
●具有两个匹配的传感器激励电流源;
●3个真差动输入或5个伪差动输入通道;
●2个附加输入校正通道;
●带有一个双向串行通讯接口;
●模拟电源和数字电源采用独立供电方式;
●可用软件控制增益和失调。
2 引脚功能
MAX1403芯片采用28引脚SSOP封装,它的引脚排列如图1所示。各引脚功能如下:
CLKIN:时钟输入引脚;
CLKOUT:时钟输出引脚。使用外部晶振时,将外部晶振连在CLKIN和CLKOUT之间;当使用外部其它时钟信号时,其时钟信号(频率为2.4576MHz或1.024MHz)在CLKIN输入,而CLKOUT不连。
CS:片选输入引脚。低电平有效。当CS为低电平时,允许芯片工作在三线接口模式,并能选择串行接口上的多个器件或作为帧同步信号。
RESET:复位输入引脚。低电平有效。当RESET为低电平时,能使控制逻辑、接口逻辑、数字滤波器和模拟调制器在上电后复位;RESET为高电平时,退出复位。
DS1:辅助数字输入位1的数字输入引脚;
DS0:辅助数据输入位0的数字输入引脚;
OUT2:传感器激励电流源2;
OUT1:传感器激励电流源1;
AGND:模拟地。为模拟电路的参考点;
V+:模拟正电源电压输入引脚,选择范围为+2.7V~+3.6V;
AIN1~AIN6:分别为模拟输入通道1~6脚;
CALGAIN-:增益校正负输入引脚;
CALGAIN+:增益校正正输入引脚;
REFIN-:差动参考负输入引脚;
REFIN+:差动参考正输入引脚;
CALOFF-:失调校正负输入引脚;
CALOFF+:失调校正正输入引脚;
DGND:数字地引脚。为数字电路参考点;
VDD:数字电源电压输入引脚。范围在+2.7V~+3.6V之间;
INT:中断输出引脚;
DOUT:串行数据输出引脚;
DIN:串行数据输入引脚;
SCLK:串行时钟输入引脚;
3 内部结构
MAX1403的内部功能结构图如图2所示。从图中可以看出,该芯片由一个开关结构、一个调制器、一个PGA(可编程增益放大器)、两个缓冲器、一个DAC、一个数字滤波器、一个振荡器、两个匹配的传感器激励电流源和一个双向串行通讯接口组成。
4 主要参数
为了能充分发挥MAX1403的性能和正确使用它,必须对推荐参数和极限参数有一个定量的了解,现将主要参数说明如下:
4.1 工作参数
MAX1403的推荐工作参数如下:
●模拟电源电压(V+):2.7V~3.6V;
●数字电源电压(VDD):2.7V~3.6V;
●参考电压:1.25V;
●时钟频率:2.4576MHz;
●无漏码精度:16位;
●模拟输入电压:(VAGND-30mV)~(V++30mV);
●数字输入电压:0.4V~2V;
●数字输出电压:0.4V~(VDD-0.3V);
●工作温度:
MAX1403CA1:0~+70℃;
MAX1403EA1:-40~+85℃;
●功耗:2~22mW;
4.2 极限参数
下面是MAX1403 ADC芯片的极限参数。
●模拟电源电压(V+):-0.3V~+6V;
●数字电源电压(VDD):-0.3V~+6V;
●模拟地与数字地间的电压:-0.3V~+0.3V;
●模拟输入电压:-0.3V~(V++0.3V);
●模拟输出电压:-0.3V~(V++0.3V);
●参考电压:-0.3V~(V++0.3V);
●所有数字输出电压:-0.3V~(VDD+0.3V);
●所有其它数字输入电压:-0.3V~+6V;
●时钟输入和时钟输出电压:-0.3V~(VDD+0.3V);
●功耗:50mW。
5 应用电路
由于MAX1403具有多种功能,所以在各种宽动态范围(电子称和压力传感器)和串行接口的单片机系统中颇受欢迎,下面给出几个主要的应用电路。
5.1 RTD应用电路
由MAX1403 和少量外围元件组成的3线RTD实用线路如图3所示。图中的两个电流源(200μA)是经过严格匹配的,其目的是为了补
[tr]
[/table]偿3线RTD线路中的误差。在3线 RTD电路中,如果只作用一个电流源,那么引线电阻将会对系统产生误差,此时200μA电流通过RL1将产生一个误差电压并加到PGA的两上输入端(AIN1和AIN2)。如果再使用另一个大小和前一个电流源大小相等的电流源。那么该电流源在RL2也将产生一个误差电压,其大小和RL1的误差电压大小相同,方向相反,从而可保证AIN1和AIN2输入端的误差电压为零,即不受引线电阻的影响。图3中的参考电压是由一个电流源(200μA)在 12.5kΩ电阻的压降提供的,这样设置能保证ADC获得更精确的比率结果。
4线RTD应用电路如图4所示。该图与3线RTD线路唯一的区别是测量输入端AIN1和AIN2没有引线电阻产生的误差电压。电流源OUT1能够给RTD提供一个激励电流,而电流源 OUT2提供的电流,在电阻RREF可产生一个参考电压供调制器使用。在4线RTD应用电路中,模拟输入电压里的RTD温度误差是由于RTD电流源温漂产生的,它可以利用改变参考电压的方式进行补偿,从而使输入端AIN1和AIN2的误差电压达到零。
MAX1403是一种18位、过采样的ADC芯片,它利用∑-Δ调制器和数字滤流器可实现真正的16位转换精度。在应用中,为了得到高输出的数据速度,可选择数字滤波因子,并可降低转换分辨率。而调制器的采样频率可作为最小功耗和最高输出数据速率选择的首选条件。
MAX1403能够提供具有独立编程(增益从1V/V~+128V/V)的三路真差动输入通道,并能补偿输入参数电压的直流失调。而这三路真差动输入通道还能组成五路伪差动输入通道。另外,该芯片还具有两个附加的差动校正通道,它能对增益和失调误差进行校正。
MAX1403 能够对所有输入信号进行处理,并通过串行数字接口向外提供转换结果。当主机时钟频率为2.4576MHz或1.024MHz时,片内数字滤波器能够对线路频率和有关谐波频率进行处理,并使这些频率的幅值为零。以使在无需外接滤波器的条件下也能获得较好的滤波效果,同时,这也有助于提高输出端数字信号的质量。
MAX1403的主要特点如下:
●分辨率为18位;
●具有8个寄存器;
●功耗低
●具有两个匹配的传感器激励电流源;
●3个真差动输入或5个伪差动输入通道;
●2个附加输入校正通道;
●带有一个双向串行通讯接口;
●模拟电源和数字电源采用独立供电方式;
●可用软件控制增益和失调。
2 引脚功能
MAX1403芯片采用28引脚SSOP封装,它的引脚排列如图1所示。各引脚功能如下:
CLKIN:时钟输入引脚;
CLKOUT:时钟输出引脚。使用外部晶振时,将外部晶振连在CLKIN和CLKOUT之间;当使用外部其它时钟信号时,其时钟信号(频率为2.4576MHz或1.024MHz)在CLKIN输入,而CLKOUT不连。
CS:片选输入引脚。低电平有效。当CS为低电平时,允许芯片工作在三线接口模式,并能选择串行接口上的多个器件或作为帧同步信号。
RESET:复位输入引脚。低电平有效。当RESET为低电平时,能使控制逻辑、接口逻辑、数字滤波器和模拟调制器在上电后复位;RESET为高电平时,退出复位。
DS1:辅助数字输入位1的数字输入引脚;
DS0:辅助数据输入位0的数字输入引脚;
OUT2:传感器激励电流源2;
OUT1:传感器激励电流源1;
AGND:模拟地。为模拟电路的参考点;
V+:模拟正电源电压输入引脚,选择范围为+2.7V~+3.6V;
AIN1~AIN6:分别为模拟输入通道1~6脚;
CALGAIN-:增益校正负输入引脚;
CALGAIN+:增益校正正输入引脚;
REFIN-:差动参考负输入引脚;
REFIN+:差动参考正输入引脚;
CALOFF-:失调校正负输入引脚;
CALOFF+:失调校正正输入引脚;
DGND:数字地引脚。为数字电路参考点;
VDD:数字电源电压输入引脚。范围在+2.7V~+3.6V之间;
INT:中断输出引脚;
DOUT:串行数据输出引脚;
DIN:串行数据输入引脚;
SCLK:串行时钟输入引脚;
3 内部结构
MAX1403的内部功能结构图如图2所示。从图中可以看出,该芯片由一个开关结构、一个调制器、一个PGA(可编程增益放大器)、两个缓冲器、一个DAC、一个数字滤波器、一个振荡器、两个匹配的传感器激励电流源和一个双向串行通讯接口组成。
4 主要参数
为了能充分发挥MAX1403的性能和正确使用它,必须对推荐参数和极限参数有一个定量的了解,现将主要参数说明如下:
4.1 工作参数
MAX1403的推荐工作参数如下:
●模拟电源电压(V+):2.7V~3.6V;
●数字电源电压(VDD):2.7V~3.6V;
●参考电压:1.25V;
●时钟频率:2.4576MHz;
●无漏码精度:16位;
●模拟输入电压:(VAGND-30mV)~(V++30mV);
●数字输入电压:0.4V~2V;
●数字输出电压:0.4V~(VDD-0.3V);
●工作温度:
MAX1403CA1:0~+70℃;
MAX1403EA1:-40~+85℃;
●功耗:2~22mW;
4.2 极限参数
下面是MAX1403 ADC芯片的极限参数。
●模拟电源电压(V+):-0.3V~+6V;
●数字电源电压(VDD):-0.3V~+6V;
●模拟地与数字地间的电压:-0.3V~+0.3V;
●模拟输入电压:-0.3V~(V++0.3V);
●模拟输出电压:-0.3V~(V++0.3V);
●参考电压:-0.3V~(V++0.3V);
●所有数字输出电压:-0.3V~(VDD+0.3V);
●所有其它数字输入电压:-0.3V~+6V;
●时钟输入和时钟输出电压:-0.3V~(VDD+0.3V);
●功耗:50mW。
5 应用电路
由于MAX1403具有多种功能,所以在各种宽动态范围(电子称和压力传感器)和串行接口的单片机系统中颇受欢迎,下面给出几个主要的应用电路。
5.1 RTD应用电路
由MAX1403 和少量外围元件组成的3线RTD实用线路如图3所示。图中的两个电流源(200μA)是经过严格匹配的,其目的是为了补
[tr]
[/table]偿3线RTD线路中的误差。在3线 RTD电路中,如果只作用一个电流源,那么引线电阻将会对系统产生误差,此时200μA电流通过RL1将产生一个误差电压并加到PGA的两上输入端(AIN1和AIN2)。如果再使用另一个大小和前一个电流源大小相等的电流源。那么该电流源在RL2也将产生一个误差电压,其大小和RL1的误差电压大小相同,方向相反,从而可保证AIN1和AIN2输入端的误差电压为零,即不受引线电阻的影响。图3中的参考电压是由一个电流源(200μA)在 12.5kΩ电阻的压降提供的,这样设置能保证ADC获得更精确的比率结果。
4线RTD应用电路如图4所示。该图与3线RTD线路唯一的区别是测量输入端AIN1和AIN2没有引线电阻产生的误差电压。电流源OUT1能够给RTD提供一个激励电流,而电流源 OUT2提供的电流,在电阻RREF可产生一个参考电压供调制器使用。在4线RTD应用电路中,模拟输入电压里的RTD温度误差是由于RTD电流源温漂产生的,它可以利用改变参考电压的方式进行补偿,从而使输入端AIN1和AIN2的误差电压达到零。
ADC 电压 滤波器 传感器 电流 模拟电路 电路 放大器 DAC 振荡器 电子 压力传感器 单片机 电阻 电容 相关文章:
- 12位串行A/D转换器MAX187的应用(10-06)
- 低功耗、3V工作电压、精度0.05% 的A/D变换器(10-09)
- 12位串行A/D转换器的原理及应用开发(10-09)
- 在射击探测器中增加口径确定功能的简单电路(11-13)
- 一种折叠共源共栅运算放大器的设计(11-20)
- 深入解析:模拟前端模/数转换器的三种类型 (11-26)