利用中档FPGA实现多相滤波器
抽头包含一个乘法器和一个加法器,当然为我们提供了总共8个乘法器和8个加法器。滤波器之后需要一些额外的逻辑,以便丢弃任何不想要的样本。
同样,在我们最初的4 ×2抽头多相实现中的每一个抽头含有一个乘法器和一个加法器,再次为我们提供了总共8个乘法器和8个加法器。在多相实现中,需要实现"旋转开关"送入滤波器的逻辑数量大约相当于在常规8抽头FIR滤波器中丢弃不要的样本所需的逻辑。
当然,多相实现还需要一些额外的逻辑和一个加法器累加来自四个子滤波器的结果。因此,最终的结果是,最初的多相实现需要比传统的8抽头FIR滤波器更多一点的逻辑。
然而,对于传统的8位FIR滤波器,在每个时钟都要执行8次乘和8次加。相比最初的多相实现的情况,在任何主时钟时刻,只有一个子滤波器是工作的。由于在这个例子中每个子滤波器含有两个抽头,这意味着这个功能的滤波器部分在每个时钟只进行两次乘法和两次加法。
当然,从四个子滤波器收集结果的求和功能还必须在每个主时钟进行加(在每4时钟周期开始时,这个累加器清零;它从四个子滤波器收集结果; 在每4时钟周期结束时,它产生一个新的值)。
这意味着,最初的多相实现的每个子滤波器有效地以常规8抽头FIR滤波器1/ 4的频率运行。反过来,这意味着最初多相实现只在每个主时钟进行两次乘法和三次加法(包括加法器的加操作),从而大大节省了功耗。
此外,在最初的多相实现中,由于四个子滤波器的每个只用了1/4的时间,这意味着在任何特定时间,我们实际上只需要其中的一个,这使我们更加完善了实现方法,如图14所示。
图14 更完善的基于多相滤波器的抽取器实现方案
在这种情况下,我们采用了单一的2抽头子滤波器,每个抽头含有乘法器和加法器。在每个主时钟,我们选择合适的系数对。每一个抽头需要额外的寄存器和用于维护的逻辑,但与减少的乘法器和加法器相比,与我们的最初多相实现相比,这是微不足道的。
当然,在我们原来的多相实现中,我们仍然要在每个主时钟时刻执行两次乘法和三次加法,。这些抽取实现例子的总结如表1所示。
表1抽取实现实例的总结
利用多相FIR滤波器进行内插
现在让我们来考虑内插的情况。首先让我们先考虑一个基于常规8抽头FIR滤波器的内插子系统的符号表示,如图15所示。
图15传统的基于8抽头FIR滤波器的内插器的符号表示
针对这些例子的用途,我们假设内插因子为L = 4,主时钟频率为FHz。正如先前所讨论的,向上采样(插入零值样本的过程)发生在滤波操作之前。
现在让我们来考虑一个最初的多相实现,我们原来的8抽头FIR滤波器被分成四个2 抽头子滤波器,如图16所示。
图16 基于4 ×2抽头多相滤波器的内插器的符号表示
在这种情况下,相同的输入数据流面向所有的四个子滤波器,在子滤波器输出之间轮流产生主输出数据流。最终的结果是,多相实现含有如同我们的常规8抽头FIR滤波器相同数量的乘法器和加法器。然而,因为在内插之前进行了滤波,子滤波器只需要以1 / 4的主时钟频率运行,从而大大节省了功耗(这里主时钟用于子滤波器输出之间的采样)。
此外,多相实现不需要向上采样(零值插入)的逻辑。当然,我们可以用完全运行于主时钟频率和复用系数的单个2抽头子滤波器取代原来的多相滤波器实现。
内插实现的这些例子的总结见表2 。
表2内插实现实例的总结
总结
DSP设计人员的工具箱的支柱之一是有限脉冲响应(FIR )滤波器。FIR滤波器越长(有大量的抽头),滤波器的响应越好。但是更多的抽头增加了逻辑要求、增加了计算的复杂性,增加了功耗,以及有更大可能的饱和/溢出。
多相技术3可用于实现滤波器,提供可比较的结果,而使用较少的逻辑,需要更少的计算资源、消耗更低的功率,并减少了可能的饱和/溢出。
所有这一切都意味着,多相基于滤波器的抽取器、内插器和重采样功能是非常适合用更小的中档FPGA来实现,如Lattice半导体公司的拥有SERDES功能的LatticeECP3系列,它具有高性能的sysDSP模块。它的特点是有dual-slice结构,具有级联/链接DSP slice和模块的功能,增强的DSP指令集使LatticeECP3系列能够引人注目地用于范围广泛的数字信号处理的应用,包括那些需要传统的FIR和基于多相的滤波功能。
注释:
1 DSP的插值形式不同于传统的数学插值方法,从现有的数据点构建新的数据点,但它的概念是相同的,因为它涉及到从现有的值产生新的值。
2 显然,在第一个抽头与0 (零)相加可以省略。然而在实践中,由MAC实行每对加和乘的操作,因此即使我们与0相加,逻辑仍然存在。
3 应该指出的是,本文对多相滤波器专题只提供一个高层次的介绍;文中的例子都做了简化。
- 基于FPGA的IIR数字滤波器的设计方案(08-17)