同步采样A/D转换器AD7262原理及应用
时间:08-21
来源:互联网
点击:
3.2 软件设计
AD7262内含6个寄存器,分别是A/D转换器的结果寄存器、控制寄存器、A/D转换器A和B的内部失调寄存器、A/D转换器A和B通道的外部增益寄存器。控制寄存器共有12位,其中,RD3~RD0是寄存器选择位。
由于LPC2378和AD7262都兼容SPI接口,两者的编程只需按照时序图进行即可。此外LPC2378还有许多其他类型接口,所以便于实现网络化,详细流程参见图5。

软件设计中需要注意:CAL引脚在CS为低电平前必须至少保持2μs高电平以确保第一个转换周期中校准的准确性。如果在这段时间内,CAL出现低电平,将导致校准结果不准确。但如果继续为高电平,下一个校准转换则是准确的。另外在A/D转换过程中,CAL若出现高电平,转换结果也将不正确。AD7262的校准是在测量过程中,A/D转换前进行的。在测量过程中先校准再采样保持。与编程写寄存器,在时序上要分开。此外使用SPI接口,只有硬件复位是不够的,还要使用软件复位以保证读写数据的正确性。实际应用中,要将数字和模拟部分地线隔离。整个软件部分采用串口读写寄存器完成。
4 结束语
与其他A/D转换器相比,AD7262除了转换速度快、接口简单、低功耗、控制功能较强的特点外,还具有内嵌PGA、自动校准、同步采样等特点,适合于不同信号强度级别的多种电极传感器的信号检测、控制和电机控制系统。目前,该系统已成功应用于物理勘探电法实验仪器中,实现A-B和M-N的电极同步电压测量,效果较好。
AD7262内含6个寄存器,分别是A/D转换器的结果寄存器、控制寄存器、A/D转换器A和B的内部失调寄存器、A/D转换器A和B通道的外部增益寄存器。控制寄存器共有12位,其中,RD3~RD0是寄存器选择位。
由于LPC2378和AD7262都兼容SPI接口,两者的编程只需按照时序图进行即可。此外LPC2378还有许多其他类型接口,所以便于实现网络化,详细流程参见图5。

软件设计中需要注意:CAL引脚在CS为低电平前必须至少保持2μs高电平以确保第一个转换周期中校准的准确性。如果在这段时间内,CAL出现低电平,将导致校准结果不准确。但如果继续为高电平,下一个校准转换则是准确的。另外在A/D转换过程中,CAL若出现高电平,转换结果也将不正确。AD7262的校准是在测量过程中,A/D转换前进行的。在测量过程中先校准再采样保持。与编程写寄存器,在时序上要分开。此外使用SPI接口,只有硬件复位是不够的,还要使用软件复位以保证读写数据的正确性。实际应用中,要将数字和模拟部分地线隔离。整个软件部分采用串口读写寄存器完成。
4 结束语
与其他A/D转换器相比,AD7262除了转换速度快、接口简单、低功耗、控制功能较强的特点外,还具有内嵌PGA、自动校准、同步采样等特点,适合于不同信号强度级别的多种电极传感器的信号检测、控制和电机控制系统。目前,该系统已成功应用于物理勘探电法实验仪器中,实现A-B和M-N的电极同步电压测量,效果较好。
放大器 比较器 传感器 电流 DSP 电压 CMOS ARM 电路 电阻 电容 相关文章:
- 使用简化电路的高压放大器(11-21)
- 无需调谐的“砖墙式”低通音频滤波器(11-20)
- 对数放大器的技术指标(11-26)
- 一种增大放大器增益的方法(11-28)
- 对数放大器的典型应用 (11-26)
- AGC中频放大器的设计 (11-29)
