微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 用DDS芯片AD9835开发的精度频率信号发生器

用DDS芯片AD9835开发的精度频率信号发生器

时间:06-24 来源:互联网 点击:
高精度测量往往需采用高精度、高稳定性、高分辨率的频率信号源。采用多个锁相环构成的频率合成器,电路复杂、价格昂贵,且信号建立时间长、动态特性较差。近年来发展起来的直接数字式频率合成器(DDS)采用高速数字电路和高速D/A转换技术,具有以往频率合成器难以达到的优点,如频率转换时间短(<20ns=、频率分辨率高(0.01Hz)、频率稳定度高(10-7至10-8)、输出信号频率和相位可快速程控切换等,因此可以很容易地对信号实现全数字式调制。而且,由于DDS是数字化高密度集成电路产品,芯片体积小、功耗低,因此可以用DDS构成高性能频率合成信号源而取代传统频率信号源产品。

我们采用Analog公司的AD9835 DDS专用芯片设计了一种由单片机及计算机控制的合成信号源,主要技术指标如下:

频率范围:0.1Hz~10MHz
频率分辨率:0.1Hz
频率稳定度:1×10-7
输出幅度:0~±10V可调
输出波形:正弦波、方波(TTL电平)、PSK、FSK、扫频本信号源有可以任意切换的两种控制方法:一种是用PC机上的并口传递控制指令及参数,为此我们用VB编写了Windows 9x操作系统下的控制界面,通过该程序可以非常容易地设定各种控制参数;另一种是用单片机控制,通过面板按钮设定参数和选择功能菜单,便于野外脱机使用。

1 DDS工作原理

1.1 DDS技术

AD9835中使用的DDS技术是从连续信号的相位Φ出发,将一个余弦信号取样、量化、编码,形成一个余弦函数表储存在ROM中。合成时改变相位增量,由于相位增量不同,一个周期内的取样点数也不同,这样产生的正弦信号频率也就不同,从而达到频率合成的效果。
在这里,余弦波信号本身是非线性的,而其相位是线性的(如图1所示)。


因此,每隔一段时间Δt(时钟周期),有对应的相位变化ΔP,即

ΔP=ωΔt=2πfΔt ?1 
从(1)式可得合成信号的频率f为:
f=?ΔP×fmc/2π ?2 
式中,fmc为固定时钟频率,fmc=1/Δt,通过改变相位值ΔP就可以改变合成信号的频率f。 DDS芯片AD9835原理框图如图2所示。


其中,相位累加器为32位,取其高12位作为读取余弦波形存储器的地址。每一次,时钟使相位累加器的输出也即余弦ROM寻址地址递增频率设定数据K,对应的波形相位变化为:

ΔP=2Πk/232 (3)

因此,改变相位累加器设定值K,就可以改变相位值ΔP,从而改变合成信号频率f。经简化,合成信号频率由下式决定:

f=K·fmc/232 ?4

式中,fmc=50MHz,用高稳定度晶体振荡器获得。K值在1<K<231之间。最低频率为fmin=fmc/232,本例为0.0116Hz,这也是本例的频率分辨率;根据Nyquist采样定律,重建信号频率最高可达fmc/2,但通常取最高频率为fmax=fmc/3。

1.2 AD9835芯片内部结构

AD9835内部结构框图如图3所示


它有一个32位相位累加器,两个32位频率寄存器F0和F1(用于设定K值),四个12位相位寄存器P0、P1、P2、P3。程控切换F0、F1时,可实现FSK和扫频功能;程控切换P0、P1、P2、P3时,可实现相位PSK调制。余弦函数表储存在ROM中。

32位相位累加器的输出值截取高12位后与12位相位寄存器Pi值相加,构成12位的相位地址,去寻址余弦ROM表。寻址得到的幅度值经10位的高速D/A转换后成为合成余弦信号。输出信号S对所有DAC输出噪声N之比SNR主要与D/A的位数有关,即与数字量化噪声有关。理论分析可知10位D/A的SNR可达60.2dB,AD公司资料给出的AD9835实际SNR优于50dB。输出信号总谐波分量畸变量与两主号频率之比m=fmc/f有关,m值越大,谐波畸变越小;m值较小时,谐波畸变较大。为消除m较小的谐波畸变,输出端采用LC高阶低通滤波器滤除高次谐波。本例中使用的是5阶Butterworth低通滤波器,可以将50MHz以上的高次谐波降低至-60dB,完全满足高精度信号源的要求。

图3中引脚FSELECT、PSEL0、PSEL1是外加调制信号,可用于对DDS进行直接位控调制,实现数字二值调频(FSK)和数字四值调相(PSK)。引脚FSYNC、SCLK、SDATA用来对DDS进行程控工作模式设定。数据传输方式为同步串行方式。图3中,AD9835可以设定为SLEEP、RESET工作方式,在SLEEP工作方式下,功耗仅为1.75mW。

2 DDS信号源设计

2.1 信号源框图

图4为系统框图。


开关SW切向上方时,信号源由单片机控制,工作模式、频率和相位参数由键盘设定,采用8位LED数码管显示,频率分辨率为0.1Hz,可以实现点频、扫频、PSW、FSK四种工作模式。开关SW切向下端时,则由PC机通过计算机并口进行程控,工作模式与单片机控制时相同。为保证0~10MHz的信号输出频带,滤波器采用无源LC 5阶滤波器。AD9835的D/A输出仅1.2V左右,信号经两级宽带高速运放放大近20倍后输出。要满足大信号10V幅度输出时无失真,末级放大器的摆率应满足S≥ωVm。在10MHz时,经计算,S≥600V/μs。

2.2 控制程序

无论是在PC机上用VB编程,还是在单片机上用汇编语言编程,主程序框图基本一致,如图5所示。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top