微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 免调中频VCO的实现

免调中频VCO的实现

时间:06-25 来源:互联网 点击:
  • 元件之间的差异(容差);
  • 不理想的性能(由于电感、电容以及引线串联电阻等造成有限的频率响应);
  • 电路布线中的分布电容和电感造成的误差。

附表列出了振荡器中频率设定元件的典型容差。另一方面,设计过程中在对准VCO调谐范围时的不确定因素还会导致设计对准误差。设计对准作为一个振荡频率建立中的误差来源常常被忽视。为了充分利用现有的频率调谐范围,调谐边界必须相对于预期的振荡频率相对称。在建立这个中心点时的任何误差,主要是由元件模型的初始值或平均值的不精确性而引起,都会降低可用的调谐范围。为了在各种温度、电源电压、元件容差等条件下保证振荡频率,调谐范围必须足够宽,以便容纳该误差。可以利用振荡频率公式计算出总的频率误差,只需对其中的每项元素乘以一个比例因子即可。

附表振荡器中频率设定元件的典型容差
元件容差
压变电容±15%于VTUNE=0.4V
±10%于VTUNE=2.4V
电感±5%
电容±5%
分布电容±10%
分布电感±6%
振荡元件阻抗±15%

频率偏移和调谐范围

频率调谐范围可通过改变调谐电压获得,从VTUNE(LOW)到VTUNE(HIGH),具有高、低频率边界(fHIGH和flow)和一个位于fHIGH和fLOW中点的“中心”频率(fcenter)(图5)。理想情况下,调谐范围应安排在使fCENTER恰好位于期望频率的位置(图5a)。然而,元件误差和设计对准误差可能会使频率调谐区间发生偏移。如果在最差情况下,系统提供的调谐电压不足,不能获得足够的频率调谐范围,则期望的振荡频率就无法达到(图5b)。显然,仔细确定调谐范围需求是很有必要的。这可能过以下方法实现,首先计算出所有误差源所引起的频率偏差,然后确定最差情况下的fLOWfOSC且fHIGH>fOSC(图5c)。


设计验证

线路板布局和元件选择完成之后,还需要对设计进行验证和测试。通常,必须检查调谐范围、启动性能、相位噪声等等性能是否符合设计要求。此外,测试必须基于一个统计有效的生产流程数量之上,以使确定调谐范围和平均中心频率,以及它们相对于预期振荡频率的相对位置。所有这些工作都是得到一个稳定的、可重复生产并具有预期性能的设计所必需的。Maxim公司已开发出新款VCO IC MAX2620,解决了VCO的设计难题,同时显著缩短了实现免调节中频VCO所必需的时间。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top