微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 流水线ADC

流水线ADC

时间:06-25 来源:互联网 点击:
三、流水线ADC和其它ADC的比较

1. 与逐次逼近型比较

在逐次逼近(SAR)ADC中,用一个高速高精度比较器将模拟输入和前一次得到的模数转换结果通过DAC后的输出相比较,依次得到MSB到LSB的每一位,逐渐逼近输入模拟信号。SAR的这一串行工作方式从本质上限制了它的工作速度,最高约为几Msps左右,对更高的分辨率(14到16位)速度就更低。流水线ADC则不同,它是并行结构,各级同时以逐次方式得到1位或几位。虽然SAR中只需一个比较器,但是这个比较器必须高速工作(速率约为总位数×采样速率),其精度必须与ADC本身一样高,相反,流水线ADC内的比较器则不需要这一速度和精度。

当然,流水线ADC通常比相同位数的SAR占据更多的硅片面积。SAR只需一周期的延迟时间(=1/Fsample)就得到结果,而流水线ADC需要3或更多周期的延迟。与流水线ADC一样,12位精度以上的SAR也需要某些形式的校正和标定。

2. 与闪速型比较

尽管流水线ADC是并行机制,但它还需要DAC的精密转换和级间增益放大,因此存在建立时间问题。纯闪速型ADC不同,它有大量的比较器,每个比较器由宽带,低增益前置放大和锁存器构成。该前置放大器不像流水线ADC中的放大器,它只需提供增益,不需要线性和精度,只是比较器的触发点要很精确。因此流水线ADC速度根本比不上设计得很好的闪速型ADC.

虽然超高速8位闪速ADC(及各种合并/插值变体)的采样速率高达1.5Gsps(比如MAX104/MAX106/MAX108),但是很难找到10位的闪速ADC,特别是12位及高于12位的ADC还没有商用化。这是因为闪速ADC分辨率每增加1位,比较器数量就增加1倍,同时每个比较器的精度必须增加1倍。流水线ADC则不同,它的复杂性随分辨率线性增加,不是指数增加。

在相同的采样速率下,流水线ADC比闪速ADC消耗功率少得多。流水线ADC不易受比较器亚稳态的影响。闪速ADC中的比较器亚稳态会导致火花码错误(即ADC输出不可预测、不稳定结果的情况)。

3. 与Σ-Δ型比较

过采样/Σ-Δ型ADC多用于带宽限于22KHz以内的数字音响中。但是最近一些Σ-Δ型转换器已经在12到16位的分辨率下达到了1至2MHz的带宽。它们通常是高阶的Σ-Δ调制器(比如4阶或更高),同一个多位的ADC和多位的DAC一起工作,主要应用于ADSL。Σ-Δ型转换器无需校正/标定,即使是16到18位分辨率,也不需要模拟输入前的陡峭滚降的抗混叠滤波器,因为它的采样频率远远高于有效带宽,它由后端的数字滤波器来处理混叠问题。Σ-Δ型转换器的过采样本质还把模拟输入中的任何系统噪声“平均滤除”。

但是Σ-Δ型转换器是以牺牲速度换取分辨率的。每输出一次采样结果都需要对输入采样很多次(比如至少16次,甚至更多),这就需要Σ-Δ调制器中模拟元件的工作速率要比最终数据输出速率快很多。数字滤波器的设计比较繁琐,另外,它也占据了一些硅片面积。目前,最快的高分辨率Σ-Δ型转换器还达不到几MHz的带宽。像流水线ADC一样,Σ-Δ型转换器也有延迟。

四、结论

流水线ADC结构适合于几Msps到100Msps采样速率,其复杂性随分辨率的增加只是线性(而不是指数)增加,具有高速、高精度和低功耗特性,适用于各种场合,特别是数字通讯领域,在这些领域中转换器的动态性能经常比微分非线性(DNL)和积分非线性等传统的ADC特性更重要。在大多数的应用中,流水线ADC的数据延迟都无关紧要。

MAXIM一直致力于发展新型转换器来增强其流水线ADC业务,包括马上就要公布的高性能的12位20/40/60Msps转换器MAX1420/MAX1421/MAX1422。MAXIM的流水线ADC使整个MAXIM的ADC系列更加丰富和完整。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top