微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 微波器件设计 > 有源窄带晶体滤波器

有源窄带晶体滤波器

时间:08-27 来源:mwrf 点击:

1.概述

在无线电测量仪器、通讯设备、遥控遥测及其他无线电设备中,常常需要通带非常窄的带通滤波器,它对于提高这些无线电测量仪器和设备的性能起着极为重要的作用。这些滤波器要求其频率从数千赫到数十千兆赫,相对带宽小到目前为止0.1%-0.01%,有的要求宽带为几十赫,甚至1赫。 能完成上述要求的窄带滤波器,有机械滤波器(包括音叉滤波器、音片滤波器、棒状或圆片状滤波器),陶瓷滤波器和晶体滤波器。概况地说,音片、音叉滤波器适用于20KHZ以下;圆片、棒状滤波器适用于600KHZ以下;陶瓷滤波器、晶体滤波器适用以上所有的频率,但晶体滤波器的Q值远较陶瓷滤波器高,能实现更窄的带宽。 本文介绍一种新型的滤波器--有源窄带晶体滤波器,可达到上述要求,有比无源晶体滤波器更窄的带宽。无论是有源或是无源晶体滤波器都采用晶体谐振器作谐振元件。无源晶体滤波器要求晶体谐振器(以下称做谐振器或晶体)的等效电感Lm很严,难以做到。然而有源晶体滤波器要求谐振器的Lm不严格,只较严格地要求Co,易于生产。

2.基本原理

众所周知,一块单晶体谐振器具有等效电感Lm、等效电容Cm、等效损耗电阻rm、和结构电容Co。 如果省掉rm,可以视为理想的三元件二端网路,那么它有一个串联谐振频率fO和一个并联谐振频率的fr。将一块谐振器串联在两级放大器之间,利用它的串联谐振特性,获得一个通带很窄的选择放大器、其中心fO而定,通带宽度决定于谐振器的Q值。这种串联晶体的选择放大器叫做有源晶体滤波器,然而它的阻带衰减特性差。这种选择放大器特性差的主要原因是由于谐振器的结构电容CO所致,因为阻带频率信号可以通过CO由第一级放大器直接藕合到第二级、频率较高时更为重要。为了克服这一缺点,则希望设置另一通路,以获得与此衰减较大的衰减特性。这就是我们研制的有源晶体滤波器,其典型线路如图1所示。

图一中BG1是一个倒相器,调整射极的电位器R2、便可以使它的射极与集电极的电压相位差180度幅度相等。X1、X2是两频相近的晶体谐振器,加在它们上面的幅度相等、相位相反的电压,分别形成如图1所士电流IX1和IX2。实际上可以看成一个加法器。由于在晶体谐振器的串联谐振频率点两边具有不同性质的阻抗(低频段为容抗,高频段为感抗),又加有幅度相等,相位相反的电压,故在它们串联谐振点附近两晶体谐振器的阻抗性质相反,则流经BG2输入端的电流是相加,输出信号电压最大,这便构成滤波器的通带;在离开串联谐振频率较远处,两晶体谐振荡器的阻抗性质相同,则流经BG2输入端的电流相互抵消,如果说倒相器使得两通路的相位相差1800,幅度完全相等,那么流经BG2输入端的电流为零,显然BG2便没有信号电压输出,这便是滤波器的阻带。电路中的R3、R4是调整两晶体X1、X2的Q值;C1、C2是调整X1、X2的频率。对于倒相器的两输出阻抗和BG2的输入阻抗都要尽可能地小,以减少对晶体谐振器Q值的影响。当然,如果晶体谐振器的实际Q值远比所需的Q值大是另一回事。至于BG1、BG2的阻抗计算与一般晶体管电路相同,这里不再详细讨论。

3.电路的选择

图1给出了有源晶体滤波器的典型线路,在低频段(一般在几百KHZ以下)还可以采用运算放大器。然而在高频段,采用集成电路困难,因此必须采用分离元件电路。例如中心频率为30MHZ的有源晶体滤波器,我们选用了fr≥800MHZ,噪声系数NF≤2.5db的3DG71D来实现分离元件的滤波电路.

有源晶体滤波器因消除了CO对阻带特性的影响,而获得了好的滤波特性,故也可以将图1中X1用于X2中的CO相当的电容C来代替,其电路如图2所示.这样一来,在一节有源滤波器中,就省了一个晶体谐振器,且滤波器的频率—衰减特性减低不多,调试也较方便。如果对于衰减特性要求更好的滤波器,使用两节单晶体滤波电路串接,其特性比一节双晶体滤波电路的滤波器好。图2中的C常采用可变电容器,其值在X2晶体谐振器CO值附近,在电路调试中进行调整。

图3是采用射极跟随器的有源晶体滤波器电路,这是一个具有低阻抗特性的滤波器。众所周知,射集跟随器BG3具有高的输入阻抗,低的输出阻抗。将电路接在滤波器的末级,不但实现了滤波器的低阻抗输出,并可减小负载对滤波器特性的影响。 图4是采用两级电路作倒相器的有源滤波器电路,这种电路的晶体谐振器通路和C通路相互影响小,电路调试方便。L3、C5和R10组成一并联谐振回路,调谐在滤波器的中心频率上,R10可以改变回路的带宽,此回路可有效地消除由于晶体产生的寄生峰(即寄生通带)。

4.晶体谐振器的计算

晶体谐振器的数量和参数的

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top