物联网当代的人工智能学习能力与人类大脑比差多少?
据羿歌信息所了解,近日,人工智能在学习能力方面又有了一个较大的提升。斯坦福大学的一个研究小组发现,人工智能系统已经拥有了通过人类当前所做的动作预测其下一步举动的能力,而这一能力主要是通过人工智能对于故事的学习形成的。
研究人员将该系统与储存了60多万个故事的写作社区Wattpad相连,这些故事包括主人公在进入房间后需要开灯、被称赞后会害羞、开会时就不会接电话等。人工智能则通过学习这些故事来实现预测人类举动的能力。
人工智能的主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。因此,深度学习的能力在其中显的尤为重要。随着技术的发展和人工智能的进步,其深度学习能力也有了一个飞速的提升。
但是,深度学习的背后是由数学模型在支撑的,所以人工智能的本质仍只是解决问题的算法。与真正的人类大脑相比,人工智能仍然相去甚远。
一、与围棋大师一较高下,人工智能深度学习能力提升
在对上述人工智能的首次现场测试中,其能够正确区分人与物体的概率高达91%,能准确预测出人们下一步举动的概率为71%,这一成绩与以往相比是很优秀的。
而人工智能再次受到关注,则是由于即将到来的围棋名将与人工智能系统的一场大战。据外媒报道,3月9日,韩国围棋名将李世石将在首尔接受来自谷歌的人工智能系统AlphaGo的挑战。
而这场即将开始的围棋比赛是十分重要的,甚至被认为可以与1997年国际象棋大师卡斯帕罗夫与IBM超级计算机“深蓝”之间的对决比肩。
1997年5月3日至5月11日,时年34岁的卡斯帕罗夫与IBM公司的国际象棋电脑“深蓝”举行了六局对抗赛。在前五局以2.5比2.5打平的情况下,第六局仅走了19步就使卡斯帕罗夫认输。“深蓝”取得胜利,标志着计算机技术的发展又上了一个台阶,也成为了科技史中的里程碑事件。
而此次人工智能系统AlphaGo与围棋大师一较高下,则有着更加重要的意义。
围棋是拥有2500多年历史的、凝聚着中国古老智慧的游戏,从数学范畴来看,围棋的复杂程度要比象棋高出N个级别,是世界公认的最为困难的棋类游戏。
为了使AlphaGo能够更好地应对这种复杂的游戏,谷歌DeepMind团队的人工智能专家们做出了许多努力。
首先,他们往AlphaGo中输入了包括3000万步走法在内的棋谱数据。尽管3000万这一数字看起来很多,但与全部的围棋走法相比就显得微不足道了。因此,还要采取一些更先进的办法。
据羿歌信息了解,专家们并未像对待“深蓝”那样,为AlphaGo开发一些固有的程序,而是赋予了AlphaGo自我编程的能力,使之成为“数字自学者”。随后,计算机开始进行自我对弈,也就是深度学习,直到其掌握高端的围棋技巧。
对此,谷歌的研究人员Demis Hassabis表示:“传统人工智能方法为所有可能位置建立搜索树。对围棋来说,这种方法行不通。因此,当我们试图打破围棋的难题时,我们采取了不同的方法。我们开发的系统将高级搜索树与深度神经网络结合在一起。这些神经网络以围棋棋盘描述作为输入,并通过包含数百万个类神经元连接的12个不同网络层次进行处理”。
由此可见,AlphaGo将比“深蓝”更加厉害。而当年“深蓝”所掌握的程序中几乎包含了其对手卡斯帕罗夫的全部对局分析,仅此一项,就足以将任何高段的围棋大师碾压。那么,更加先进的AlphaGo的出现,无疑使人类棋手面临着人工智能提出的更加高难度的挑战。
二、深度学习背后是数学模型支撑,与人类大脑相去甚远
事实上,AlphaGo以往的成绩已经证明了其优秀程度。AlphaGo曾在与其他围棋人工智能系统进行的500盘对弈中,赢得了499盘。去年10月,AlphaGo在五番棋的较量中,以5比0的成绩击败了职业围棋手、欧洲围棋冠军樊麾,这也是人工智能首次击败职业围棋手。
对于即将到来的“谷李大战”,围棋界专业人士也发表了自己的看法。台北“红面棋王”、九段围棋手周俊勋表示,之前曾坚定地认为李世石会以5比0完胜AlphaGo,但在看过一些报道以及科技界人士对于AlphaGo的分析之后,他的态度转变为谨慎。
周俊勋认为,从AlphaGo与樊麾对决的5局棋谱来看,在特定的条件下,尤其是官子阶段,计算机的准确度有明显的提升。“不夸张地说,每个局部的定型收束不见得比全盛时代的‘石佛’李昌镐差。如果再这么进步下去,中盘战斗力也会显著提升”。
这一突破具有重大意义。在过去的几十年时间里,围棋软件始终无法突破人类的初级水平,更遑论与人类中的高手相抗衡。如今人工智能围棋系统突飞猛进的局面,与其深度学习的能力是分不开的。
尽管人工智能领域的发展如火如荼,但与真正的人脑相比,仍然存在很大
神经网络 相关文章:
- 神经网络预测编码器的设计及应用(05-24)
- 模块化免疫神经网络模型在计算机病毒分类检测中的应用(05-29)
- LabVIEW中BP神经网络的实现及应用(06-19)
- 神级经典设计案例:用ARM和FPGA搭建神经网络处理器通信方案(07-19)
- 智能通信终端的关键技术研究(09-19)
- 无线环境远程监控系统(10-23)