微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络技术文库 > 给"小白"图示讲解OFDM的原理

给"小白"图示讲解OFDM的原理

时间:01-29 来源:互联网 点击:
章节二:频域上的OFDM
  第一章节时域上的讨论开始于OFDM中的"O";本章节频域上我们从"FDM"开始。
  先图例一个常规FDM的系统图:
  


  图11:常规FDM,两路信号频谱之间有间隔,互相不干扰
  为了更好的利用系统带宽,子载波的间距可以尽量靠近些。
  


  图12:靠得很近的FDM,实际中考虑到硬件实现,解调第一路信号时,已经很难完全去除第二路信号的影响了(电路的实现毕竟不能像剪刀裁纸一样利落),两路信号互相之间可能已经产生干扰了
  还能再近些吗?可以的。这就是OFDM的来历啊,近到完全等同于奈奎斯特带宽(后面有详述),使频带的利用率达到了理论上的最大值。
  


  图13:继续靠近,间隔频率互相正交,因此频谱虽然有重叠,但是仍然是没有互相干扰的。神奇的OFDM
  上面三个图的确有点小儿科,不知道"小白"是不是已经在心里呐喊:这谁不知道呀!不过我在这里花时间画了三张图,总还是有所考量的:
  a.
  作为上一个章节和本章节之间的补充和连接,说明一下OFDM在频域上面的表现,亦即OFDM的本源来历。
  b. 引导思考:信号的带宽是多少?
  c.
  引导思考:OFDM正交频谱叠加部分到底有多宽呢?结合1.4,先想想,再往下看,会更好。
  再次回到正轨,请回看第一节中的图一至图六等时域波形图,图示了在时域上,波形的调制,叠加接收,以及最终的解码。让我们看看图一至图三中的每个步骤在频域上是如何表现的。
  首先来看sin(t)。"小白"呀"小白",你且说说sin(t)的频谱是啥呀?"小白"弱弱的说:是一个冲激。是的,sin(t)是个单一的正弦波,代表着单一的频率,所以其频谱自然是一个冲激。不过其实图一中所示的sin(t)并不是真正的sin(t),而只是限定在[0,2π]之内的一小段。无限长度的信号被限制在一小截时间之内,【就好比从一个完整的人身上逮下一根头发,然后把整个人都丢掉,以发代人】其频谱也不再是一个冲激了。
  对限制在[0,2π]内的sin(t)信号,相当于无限长的sin(t)信号乘以一个[0,2π]上的门信号(矩形脉冲),其频谱为两者频谱的卷积。sin(t)的频谱为冲激,门信号的频谱为sinc信号(即sin(x)/x信号)。冲激信号卷积sinc信号,相当于对sinc信号的搬移。所以分析到这里,可以得出图一的时域波形其对应的频谱如下:
  


  图21:限定在[0,2π]内的a·sin(t)信号的频谱,即以sin(t)为载波的调制信号的频谱
  sin(2t)的频谱分析基本相同。需要注意的是,由于正交区间为[0,2π],因此sin(2t)在相同的时间内发送了两个完整波形。相同的门函数保证了两个函数的频谱形状相同,只是频谱被搬移的位置变了:
  


  图22:限定在[0,2π]内的b·sin(2t)信号的频谱,即以sin(2t)为载波的调制信号的频谱
  将sin(t)和sin(2t)所传信号的频谱叠加在一起,如下:
  


  图23:a·sin(t)+b·sin(2t)信号的频谱
  图23和图13,均是频域上两个正交子载波的频谱图。比一下,发现了吗?不太一样!
  是的,想必你已经想起来了,这是因为基带信号在传输前,一般会通过脉冲成型滤波器的结果。比如使用"升余弦滚降滤波器"后,图23所示的信号就会被修理成图13所示的信号了。这样可以有效的限制带宽外部的信号,在保证本路信号没有码间串扰的情况下,既能最大限度的利用带宽,又能减少子载波间的各路信号的相互干扰。这也是1.4中没有提及的,更多的可参考[1]
  贴士:脉冲成型滤波器作用于频域,可以"看作"时域中的每个码元都是以类似sinc信号发出的。没必要纠结于发送端码元的时域波形,只需要知道在接收端通过合适的采样就可以无失真的恢复信号就OK咯。
  这里用到的是奈奎斯特第一准则,在下面的框框内会稍作描述:
  奈奎斯特第一准则请自行google,这里说说其推论:码元速率为1/T(即每个码元的传输时长为T),进行无码间串扰传输时,所需的最小带宽称为奈奎斯特带宽。
  对于理想低通信道,奈奎斯特带宽W = 1/(2T)
  对于理想带通信道,奈奎斯特带宽W =1/T
  在下面的图31中,可以看出信号的实际带宽B是要大于奈奎斯特带宽W(低通的1/(2T)或者带通的1/T)的,这就是理想和现实的距离。
  补充说明:本文提到的"带宽",也即约定俗成的带宽理解方式,指的是信号频谱中>=0的部分。在从低通到带通的搬移过程中,因为将原信号负频率部分也移出来了(也可理解为同乘e(j2πfct)
  + e(-j2πfct)的结果,见参考[2])【注:没有上角标和下角标的编辑器,真不爽。不过,你应该看得懂的】,所以带宽翻倍了。如下图所示:
  


  图31:内涵丰富的图,请参看上面和下面的说明文字
  上面专门用框框列出奈奎斯特第一准则,还有一个重要目的就是说明下频带利用率的问题。频带利用率是码元速率1/T和带宽B(或者W)的比值。
  理想情况下,低通信道频带利用率为2Baud/Hz;带通信道频带利用率同样为2Baud/Hz(负频率移出来后,和正频率一样可以独立携带信号)
  实际情况下,因为实际带宽B要大于奈奎斯特带宽W,所以实际FDM系统的频带利用率会低于理想情况。
  【说到这里,终于可以图穷匕见了】而OFDM的子载波间隔最低能达到奈奎斯特带宽,也就是说(在不考虑最旁边的两个子载波情况下),OFDM达到了理想信道的频带利用率。
  


  图32:OFDM正交子载波,载频间距为奈奎斯特带宽,保证了最大的频带利用率
  将上述的频域分析配上LTE的实现,有如下情况:
  【注:本段描述需要有LTE物理层的基本知识】
  子载波的间隔Δf=15kHz,一个OFDM
  symbol的发送时间是66.7us。在10MHz信道上,1ms的子帧共传输14个OFDM symbol【不是15个,留空给CP了】,每一个OFDM
  symbol携带600个复数信息,因此:
  1. 从整个系统来看,波特率为600*14*2/1ms =
  16.8MBaud,占据带宽10MHz,因此带宽利用率为16.8MBaud/10MHz =
  1.68Baud/Hz,接近2Baud/Hz的理想情况。【注:一是CP占用了每个OFDM
  Symbol约1/15的资源,二是10MHz的频带并不是满打满算的用于传输数据,其边界频带需要留空以减少与邻近信道的干扰】
  2.
  单从OFDM一个symbol来看,波特率为600*2/66.7us =
  18MBaud,占据带宽600*15kHz=9MHz【不考虑边界子载波带外问题】,因此其带宽利用率为18MBaud/9MHz=2Baud/Hz,符合上面的讨论。
  附:5M带宽的WCDMA的chip
  rate = 3.84M/s,即码率为3.84M*2 = 7.68MBaud,带宽5M,所以带宽利用率为7.68MBaud/5MHz =
  1.536Baud/Hz,略逊于LTE的1.68Baud/Hz【注:WCDMA的脉冲成型采用滚降系数为0.22的升余弦滤波器,奈奎斯特带宽为3.84M】

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top