满足5G通信研发需求 大规模MIMO测试台应运而生
时间:02-10
来源:互联网
点击:
作者:Erik Luther,美商国家仪器RF和SDR资深产品营销经理
大规模多重输入多重输出(Massive MIMO)是一个非常有趣的5G无线研究领域。因为其可针对新一代无线数据网络提供多方面的优势,比如说以更高的数据传输率容纳更多用户,加强稳定度之余,还可降低耗电量。
只要使用大规模MIMO应用架构,研究人员可透过系统设计软件如LabVIEW和软件定义无线电(SDR),打造出一百二十八支天线的MIMO测试台,迅速制作大规模的天线系统原型。由于现场可编程门阵列(FPGA)架构逻辑的设计流程经过简化,高效能处理的部署过程也很顺畅,所以该领域的研究人员可以透过一致的软硬件设计流程,满足这类超复杂系统的原型制作需求。
采大量天线 大规模MIMO提升无线数据传输率
行动装置的数量和所消耗的无线资料量持续激增,促使研究人员须投入新技术的研究,才能满足不断成长的需求。新一代5G无线数据网络必须搭配目前的通讯系统,克服容量限制、网络稳定性、覆盖范围、能源效率和延迟时间等难题。
大规模MIMO为5G的候选技术,在基地台收发站(BTS)采用大量的天线(超过六十四支),能够大幅提升无线数据传输率和链接稳定性。现有标准的BTS架构采用分区拓扑,最多也只有八支天线。
大规模MIMO囊括数百个天线组件,可透过预先编码技巧把能源集中在目标行动用户身上,进一步降低辐射。只要把无线能源导向特定的用户,就能够降低辐射,同时也可避免干扰其他使用者。
就目前受干扰限制的行动网络而言,这是相当吸引人的一点。如果大规模MIMO确实能提供上述效能,未来的5G网络就会变得更快、可容纳更多使用者,提供更出色的稳定性和能源效率。
由于大规模MIMO的天线组件数量很多,也带来了目前网络所没有的系统难题。举例来说,就目前采用LTE或LTE-Advanced的进阶数据网络而言,导引讯号负载(Pilot Overhead)必须和天线数量成比例。
大规模MIMO会透过通道互惠在上行和下行链路之间使用分时双工(TDD),藉此管理大量天线的负载。有了信道互惠,即可把上行导引讯号的信道状态信息用于下行预先编码器。实践大规模MIMO的困难之处还包含了扩充十倍的数据总线和接口,或是在大量的独立射频(RF)收发器之间达到更多也更分散的同步化效能。
正因为这些时序、处理和数据收集难题,所以原型制作便显得更重要。如果研究人员要检验理论内容,就得从理论研究转向测试台。只要在实际情境中使用实际波形,研究人员即可开发原型,判断大规模MIMO的可行性和商用价值。就像所有的全新无线标准或技术一样,从概念转移至原型确实会影响实际的部署和商品化程序。
SDR搭配系统设计软件 MIMO系统架构弹性大跃进
完整的大规模MIMO系统应用架构须包含必备的软硬件,藉此打造出多功能、可扩充及灵活有弹性的大规模MIMO测试台,以便透过重点频带与带宽提供实时的双向通讯效能给研究社群。
图1 瑞典隆德大学的大规模MIMO测试台采用了USRP RIO(a)和客制化的交叉极化平面天线数组(b)。
藉由SDR和系统设计软件,就可以发挥MIMO系统的模块化特性,把数个节点扩充为一百二十八支天线的大规模MIMO系统。透过灵活有弹性的硬件,即可随着无线研究需求变化而重新部署至其他设定,比如说做为分布式节点部署于随建即连(Ad-hoc)网络,也可做为多细胞协调网络。
瑞典隆德大学(Lund University)Ove Edfors和Fredrik Tufvesson教授采用大规模MIMO应用架构,与美商国家仪器(NI)合作开发出全球最大的MIMO系统(图1)。该系统用了五十个SDR,打造出一百支天线的大规模MIMO BTS设定,如表1所示。
NI和隆德大学的研究团队根据SDR的概念,使用类似LTE的物理层和TDD开发出系统软件和物理层,藉此提供行动存取功能。这次合作所开发出来的软件已成为大规模MIMO应用架构的软件组件。
就像其他的通讯网络一样,大规模MIMO系统包含BTS和客户端设备(UE)或行动使用者。事实上,大规模MIMO主要是为了行动应用而设计的,包含BTS、UE或行动使用者。然而,大规模MIMO和传统的拓扑很不一样,主要差别在于配置大量的BTS天线,能够同时和多个UE通讯。
就NI和隆德大学合作开发的系统而言,BTS的系统设计针对每个UE提供十个基地台天线组件,可供十个使用者以完整带宽同时存取一百个天线基地台。经过证实,每个UE有十个基地台天线的设计有助于提高理想增益。
大规模MIMO系统内有一组UE会同时把一组正交导引讯号传输至BTS。接着就可以使用收到的上行导引讯号来评估信道矩阵,在下行时槽内,这项通道评估会用于计算下行讯号的预先编码器。
理论上,每个行动使用者即可透过无干扰的通道接收专属于自己的讯息。预先编码器设定是一种开放的研究领域,可针对不同的系统设计目标加以设计,举例来说,预先编码器可设计为对其他使用者零干扰、尽可能降低辐射功率,也可减少所传输射频讯号的峰均功率比。
透过上述设计,大规模MIMO应用架构可支持高达20MHz的瞬间实时带宽,并从六十四支天线扩充为一百二十八支,还能够提供给多个独立UE使用。表1是在此环境下,部署类似LTE协议的参数状态,其中采用一个2,048个点的快速傅立叶变换(FFT)和0.5毫秒的时槽。0.5毫秒的时槽可确保合适的通道和谐状态,提高行动测试情境(也就是UE移动中)的通道互惠效能。
大规模MIMO系统的四大设计关键如下。
‧ 灵活的SDR,可撷取并传输射频讯号。
‧ 无线电站之间可达到准确的时间与频率同步化。
‧ 高输出率的精确总线,可迁移并汇整大量的数据。
‧ 出色的处理效能,可用于物理层和媒体访问控制(MAC)执行,藉此满足实时效能需求。
理论上,这些关键项目可针对不同的研究需求快速完成客制化。本文的应用架构集结了SDR、频率分配模块、高输出率PXI系统和LabVIEW,提供稳健又精确的原型制作平台,进一步满足研究需求。其中,SDR透过一个半宽1U、机架安装式的机壳,提供整合式2×2 MIMO收发器和高效能FPGA,有助于加速基频处理作业(图2)。此外,其可透过PCI Express×4连接至主机控制器和系统控制器,能够以高达800Mbit/s的数据串流速度传输至桌上型或PXI Express主计算机,或透过ExpressCard以200Mbit/s的速度传输至笔记本电脑。
图2 USRP RIO硬件(a)和系统方块图(b)
上述的SDR硬件名为USRP RIO,搭载LabVIEW可重设I/O(RIO)架构,其中结合开放式的系统设计软件和高效能硬件,有助于大幅简化开发作业。紧密的软硬件整合能够降低系统整合的难度,对于如此大规模的系统更是如此,可以让研究人员致力于研究项目。
大规模多重输入多重输出(Massive MIMO)是一个非常有趣的5G无线研究领域。因为其可针对新一代无线数据网络提供多方面的优势,比如说以更高的数据传输率容纳更多用户,加强稳定度之余,还可降低耗电量。
只要使用大规模MIMO应用架构,研究人员可透过系统设计软件如LabVIEW和软件定义无线电(SDR),打造出一百二十八支天线的MIMO测试台,迅速制作大规模的天线系统原型。由于现场可编程门阵列(FPGA)架构逻辑的设计流程经过简化,高效能处理的部署过程也很顺畅,所以该领域的研究人员可以透过一致的软硬件设计流程,满足这类超复杂系统的原型制作需求。
采大量天线 大规模MIMO提升无线数据传输率
行动装置的数量和所消耗的无线资料量持续激增,促使研究人员须投入新技术的研究,才能满足不断成长的需求。新一代5G无线数据网络必须搭配目前的通讯系统,克服容量限制、网络稳定性、覆盖范围、能源效率和延迟时间等难题。
大规模MIMO为5G的候选技术,在基地台收发站(BTS)采用大量的天线(超过六十四支),能够大幅提升无线数据传输率和链接稳定性。现有标准的BTS架构采用分区拓扑,最多也只有八支天线。
大规模MIMO囊括数百个天线组件,可透过预先编码技巧把能源集中在目标行动用户身上,进一步降低辐射。只要把无线能源导向特定的用户,就能够降低辐射,同时也可避免干扰其他使用者。
就目前受干扰限制的行动网络而言,这是相当吸引人的一点。如果大规模MIMO确实能提供上述效能,未来的5G网络就会变得更快、可容纳更多使用者,提供更出色的稳定性和能源效率。
由于大规模MIMO的天线组件数量很多,也带来了目前网络所没有的系统难题。举例来说,就目前采用LTE或LTE-Advanced的进阶数据网络而言,导引讯号负载(Pilot Overhead)必须和天线数量成比例。
大规模MIMO会透过通道互惠在上行和下行链路之间使用分时双工(TDD),藉此管理大量天线的负载。有了信道互惠,即可把上行导引讯号的信道状态信息用于下行预先编码器。实践大规模MIMO的困难之处还包含了扩充十倍的数据总线和接口,或是在大量的独立射频(RF)收发器之间达到更多也更分散的同步化效能。
正因为这些时序、处理和数据收集难题,所以原型制作便显得更重要。如果研究人员要检验理论内容,就得从理论研究转向测试台。只要在实际情境中使用实际波形,研究人员即可开发原型,判断大规模MIMO的可行性和商用价值。就像所有的全新无线标准或技术一样,从概念转移至原型确实会影响实际的部署和商品化程序。
SDR搭配系统设计软件 MIMO系统架构弹性大跃进
完整的大规模MIMO系统应用架构须包含必备的软硬件,藉此打造出多功能、可扩充及灵活有弹性的大规模MIMO测试台,以便透过重点频带与带宽提供实时的双向通讯效能给研究社群。
图1 瑞典隆德大学的大规模MIMO测试台采用了USRP RIO(a)和客制化的交叉极化平面天线数组(b)。
藉由SDR和系统设计软件,就可以发挥MIMO系统的模块化特性,把数个节点扩充为一百二十八支天线的大规模MIMO系统。透过灵活有弹性的硬件,即可随着无线研究需求变化而重新部署至其他设定,比如说做为分布式节点部署于随建即连(Ad-hoc)网络,也可做为多细胞协调网络。
瑞典隆德大学(Lund University)Ove Edfors和Fredrik Tufvesson教授采用大规模MIMO应用架构,与美商国家仪器(NI)合作开发出全球最大的MIMO系统(图1)。该系统用了五十个SDR,打造出一百支天线的大规模MIMO BTS设定,如表1所示。
NI和隆德大学的研究团队根据SDR的概念,使用类似LTE的物理层和TDD开发出系统软件和物理层,藉此提供行动存取功能。这次合作所开发出来的软件已成为大规模MIMO应用架构的软件组件。
就像其他的通讯网络一样,大规模MIMO系统包含BTS和客户端设备(UE)或行动使用者。事实上,大规模MIMO主要是为了行动应用而设计的,包含BTS、UE或行动使用者。然而,大规模MIMO和传统的拓扑很不一样,主要差别在于配置大量的BTS天线,能够同时和多个UE通讯。
就NI和隆德大学合作开发的系统而言,BTS的系统设计针对每个UE提供十个基地台天线组件,可供十个使用者以完整带宽同时存取一百个天线基地台。经过证实,每个UE有十个基地台天线的设计有助于提高理想增益。
大规模MIMO系统内有一组UE会同时把一组正交导引讯号传输至BTS。接着就可以使用收到的上行导引讯号来评估信道矩阵,在下行时槽内,这项通道评估会用于计算下行讯号的预先编码器。
理论上,每个行动使用者即可透过无干扰的通道接收专属于自己的讯息。预先编码器设定是一种开放的研究领域,可针对不同的系统设计目标加以设计,举例来说,预先编码器可设计为对其他使用者零干扰、尽可能降低辐射功率,也可减少所传输射频讯号的峰均功率比。
透过上述设计,大规模MIMO应用架构可支持高达20MHz的瞬间实时带宽,并从六十四支天线扩充为一百二十八支,还能够提供给多个独立UE使用。表1是在此环境下,部署类似LTE协议的参数状态,其中采用一个2,048个点的快速傅立叶变换(FFT)和0.5毫秒的时槽。0.5毫秒的时槽可确保合适的通道和谐状态,提高行动测试情境(也就是UE移动中)的通道互惠效能。
大规模MIMO系统的四大设计关键如下。
‧ 灵活的SDR,可撷取并传输射频讯号。
‧ 无线电站之间可达到准确的时间与频率同步化。
‧ 高输出率的精确总线,可迁移并汇整大量的数据。
‧ 出色的处理效能,可用于物理层和媒体访问控制(MAC)执行,藉此满足实时效能需求。
理论上,这些关键项目可针对不同的研究需求快速完成客制化。本文的应用架构集结了SDR、频率分配模块、高输出率PXI系统和LabVIEW,提供稳健又精确的原型制作平台,进一步满足研究需求。其中,SDR透过一个半宽1U、机架安装式的机壳,提供整合式2×2 MIMO收发器和高效能FPGA,有助于加速基频处理作业(图2)。此外,其可透过PCI Express×4连接至主机控制器和系统控制器,能够以高达800Mbit/s的数据串流速度传输至桌上型或PXI Express主计算机,或透过ExpressCard以200Mbit/s的速度传输至笔记本电脑。
图2 USRP RIO硬件(a)和系统方块图(b)
上述的SDR硬件名为USRP RIO,搭载LabVIEW可重设I/O(RIO)架构,其中结合开放式的系统设计软件和高效能硬件,有助于大幅简化开发作业。紧密的软硬件整合能够降低系统整合的难度,对于如此大规模的系统更是如此,可以让研究人员致力于研究项目。
LabVIEW 无线电 FPGA LTE 编码器 总线 射频 收发器 PXI Xilinx GPS 振荡器 VHDL 嵌入式 相关文章:
- LabVIEW中BP神经网络的实现及应用(06-19)
- 基于LabVIEW的多通道数据采集系统的研究(06-29)
- 大区域内的无线数据采集系统(09-04)
- 基于LabVIEW的网络虚拟实验室设计(09-24)
- 在LabVIEW中实现基于C/S结构的远程数据采集 (11-24)
- LabVIEW和NI USRP硬件加快了认知无线电研究 (08-07)