新一代移动通信的核心技术OFDM调制技术
时间:12-06
来源:互联网
点击:
3 OFDM的同步问题
OFDM系统对定时和频率偏移敏感,特别是实际应用中与其他多址方式结合使用时,时域和频率同步显得尤为重要。与其他数字通信系统一样,同步分为捕获和跟踪两个阶段。在下行链路中,基站向各个移动终端广播发送同步信号,所以,下行链路同步相对简单,较易实现。在上行链路中,来自不同移动终端的信号必须同步到达基站,才能保证子载波间的正交性。基站根据各移动端发来的子载波携带信息进行时域和频域同步信息的提取,再由基站发回移动终端,以便让移动终端进行同步。具体实现时,同步将分为时域和频域同步,也可以时域和频域同时进行同步。本文主要探讨时域同步,时域同步主要有两种,即基于导频(Pilots)和基于循环前缀的同步。

3.1 基于导频的同步
在基于导频信息的时域同步方法中,OFDM信号是用调频(FM)的方式发送的。系统保留了一些子信道作为传送导频之用,这些子信道的相位与幅度都是已知的,在执行算法时将对这些子信道进行编码。算法包括3部分:功率检测、粗同步(捕获)和细同步(跟踪)。在功率检测中,接收端将检测接收到的信号功率,并将之与门限比较,从而判断OFDM信号是否已经到达接收端。在粗同步阶段,通过将接收信号与存储在本地的复制的同步信号作相关运算实现定时误差控制在±0.5个抽样值以内。这时的性能还远不够,但这一步将有助于细同步(跟踪)的实现,因为细同步的前提是定时错误很小。在细同步阶段,每个子信道都有其导频信息,每个子信道都由导频信息提供的信道特征进行均衡。由于粗同步已经保证定时错误在±0.5个符号持频时间以内,信道中的冲激响应就应已经落在CP以内。导频子信道上剩下的相位错误是由定时错误引起的,可以通过线性回归来估计。
3.2 基于CP的同步
在OFDM的发展中,CP是一种很好的思想,他主要有2个作用:
(1)可以作为保护问隔,消除或者至少可以大大减少ISI;
(2)由于保持了各信道间的正交性,他大大减少了ICI。
由于使用CP,对定时的要求就不那么严格了。在基于CP的时域同步中,对时域估计器的要求是由CP与信道冲激响应长度之差决定的。如果定时错误(Timing Er-ror,也即时域偏移)较小,使得冲激响应长度小于CP长度,则各子载波之间的正交性仍可以维持。如果冲激响应长度小于CP长度,那么这个时候符号定时时延(即时域偏移)可以认为是由信道引起的一个相位偏移。这个时域偏移将导致子载波星座产生相位旋转,这种相位旋转在频带边缘达到最大,相位旋转的大小可以用信道估计器来估计。如果时延长度大于CP长度,则必然会出现ISI。
4 OFDM的PAPR问题
由于OFDM信号时域上表现为,N个正交子载波信号的叠加,当这N个信号恰好均以峰值相加时,OFDM信号也将产生最大峰值,该峰值功率是平均功率的N倍。尽管峰值功率出现的概率较低,但为了不失真地传输这些高峰一平功率比(PAPR)的OFDM信号,发送端对高功率放大器(HPA)的线性度要求也很高。因此,高的PAPR使得OFDM系统的性能大大下降,甚至直接影响实际应用。为了解决这一问题,人们进行了大量的研究工作,其工作主要可以归纳为4类:
4.1 信号畸变技术
这种方法的基本原理是将OFDM信号的峰值及其附近区域进行非线性畸变,以减小峰值功率。对超出某一规定值的信号部分进行剪切(clipping)是最简单的非线性畸变处理方法。但是,clipping显然会引起信号的失真从而使系统的误码率性能变差。同时,clipping处理还大大增加带外辐射而干扰工作在附近频点的其他系统,并且会降低功率效率。为了减少clipping的带外辐射,可以采用对峰值加窗(peakwindowing)的办法,实际加窗处理可以采用cosine,kaiser和ham-ming等具有较好频谱特性的窗口。为了克服由clip-ping和peakwindowing处理引起的误码率性能劣化,对话音通信,通常可以采用有效的信道编解码技术;对数据通信,再结合使用多种扰码和重发技术,以不同峰值分布的信号传输同一组信息。另外,为了避免非线性畸变处理带来的带外辐射,可以选用与发送信号带宽相当的参考函数进行峰值取消(peakcancellation)处理,其实质与clip-ping后再加滤波(filtering)处理的功能相当。
4.2 信号编码技术
这种方法的基本原理是利用不同编码产生PAPR较小的OFDM符号,显然,要求的PAPR越小,可用的码组就越少。他运用一种特殊的前向纠错技术剔除高PAPR的OFDM信号,具体涉及分组码、格雷(Golay)码和雷德密勒(Reed-muller)码等。Golay码开创了一种构造低PAPR码组的有效方法,并且已经成功地应用于无线ATM系统。另外,Golay码与信道编解码技术结合起来可以形成既有较低PAPR又有较好信道纠检错能力的码组。
4.3 符号扰码技术
亦称选择映射和部分发送技术,又可以作为信号编码技术的特例,这种方法的基本原理是对输入信号同时进行多种扰码处理,选择PAPR最小的输出信号发送出去,对于不相关的扰码序列,产生的OFDM信号与其对应的PAPR也是不相关的。所以,如果未经扰码的OFDM符号的PAPR超出某一值的概率为p,那么,通过k种扰码处理并优选后该概率降低到pk。因此,符号扰码技术并不保证PAPR降低到某一值以下,而是减小高PAPR发生的概率。选择映射是对所有子载波进行各自独立的扰码处理,部分发送技术仅对子载波组进行扰码处理。
4.4 信号空间扩展技术
新近提出的基于信号空间扩展降低PAPR方法,其基本思想是在OFDM调制方案中,通过减少使用的载波数使信号空间得以扩展,然后,选择其中较低PAPR的组合与发送信号建立映射关系,从而降低整个OFDM系统的PAPR。该方法的关键是通过仿真得到不同子载波数N,不同信息速率下的最佳映射表,对于N 较大的情况,同样可以直接通过最佳映射表实现,但仿真运算量巨大,也可以通过N值较小的几个系统并行搭建。当然,两种方法的降低PAPR性能和系统误码率性能会有所不同。
OFDM系统对定时和频率偏移敏感,特别是实际应用中与其他多址方式结合使用时,时域和频率同步显得尤为重要。与其他数字通信系统一样,同步分为捕获和跟踪两个阶段。在下行链路中,基站向各个移动终端广播发送同步信号,所以,下行链路同步相对简单,较易实现。在上行链路中,来自不同移动终端的信号必须同步到达基站,才能保证子载波间的正交性。基站根据各移动端发来的子载波携带信息进行时域和频域同步信息的提取,再由基站发回移动终端,以便让移动终端进行同步。具体实现时,同步将分为时域和频域同步,也可以时域和频域同时进行同步。本文主要探讨时域同步,时域同步主要有两种,即基于导频(Pilots)和基于循环前缀的同步。

3.1 基于导频的同步
在基于导频信息的时域同步方法中,OFDM信号是用调频(FM)的方式发送的。系统保留了一些子信道作为传送导频之用,这些子信道的相位与幅度都是已知的,在执行算法时将对这些子信道进行编码。算法包括3部分:功率检测、粗同步(捕获)和细同步(跟踪)。在功率检测中,接收端将检测接收到的信号功率,并将之与门限比较,从而判断OFDM信号是否已经到达接收端。在粗同步阶段,通过将接收信号与存储在本地的复制的同步信号作相关运算实现定时误差控制在±0.5个抽样值以内。这时的性能还远不够,但这一步将有助于细同步(跟踪)的实现,因为细同步的前提是定时错误很小。在细同步阶段,每个子信道都有其导频信息,每个子信道都由导频信息提供的信道特征进行均衡。由于粗同步已经保证定时错误在±0.5个符号持频时间以内,信道中的冲激响应就应已经落在CP以内。导频子信道上剩下的相位错误是由定时错误引起的,可以通过线性回归来估计。
3.2 基于CP的同步
在OFDM的发展中,CP是一种很好的思想,他主要有2个作用:
(1)可以作为保护问隔,消除或者至少可以大大减少ISI;
(2)由于保持了各信道间的正交性,他大大减少了ICI。
由于使用CP,对定时的要求就不那么严格了。在基于CP的时域同步中,对时域估计器的要求是由CP与信道冲激响应长度之差决定的。如果定时错误(Timing Er-ror,也即时域偏移)较小,使得冲激响应长度小于CP长度,则各子载波之间的正交性仍可以维持。如果冲激响应长度小于CP长度,那么这个时候符号定时时延(即时域偏移)可以认为是由信道引起的一个相位偏移。这个时域偏移将导致子载波星座产生相位旋转,这种相位旋转在频带边缘达到最大,相位旋转的大小可以用信道估计器来估计。如果时延长度大于CP长度,则必然会出现ISI。
4 OFDM的PAPR问题
由于OFDM信号时域上表现为,N个正交子载波信号的叠加,当这N个信号恰好均以峰值相加时,OFDM信号也将产生最大峰值,该峰值功率是平均功率的N倍。尽管峰值功率出现的概率较低,但为了不失真地传输这些高峰一平功率比(PAPR)的OFDM信号,发送端对高功率放大器(HPA)的线性度要求也很高。因此,高的PAPR使得OFDM系统的性能大大下降,甚至直接影响实际应用。为了解决这一问题,人们进行了大量的研究工作,其工作主要可以归纳为4类:
4.1 信号畸变技术
这种方法的基本原理是将OFDM信号的峰值及其附近区域进行非线性畸变,以减小峰值功率。对超出某一规定值的信号部分进行剪切(clipping)是最简单的非线性畸变处理方法。但是,clipping显然会引起信号的失真从而使系统的误码率性能变差。同时,clipping处理还大大增加带外辐射而干扰工作在附近频点的其他系统,并且会降低功率效率。为了减少clipping的带外辐射,可以采用对峰值加窗(peakwindowing)的办法,实际加窗处理可以采用cosine,kaiser和ham-ming等具有较好频谱特性的窗口。为了克服由clip-ping和peakwindowing处理引起的误码率性能劣化,对话音通信,通常可以采用有效的信道编解码技术;对数据通信,再结合使用多种扰码和重发技术,以不同峰值分布的信号传输同一组信息。另外,为了避免非线性畸变处理带来的带外辐射,可以选用与发送信号带宽相当的参考函数进行峰值取消(peakcancellation)处理,其实质与clip-ping后再加滤波(filtering)处理的功能相当。
4.2 信号编码技术
这种方法的基本原理是利用不同编码产生PAPR较小的OFDM符号,显然,要求的PAPR越小,可用的码组就越少。他运用一种特殊的前向纠错技术剔除高PAPR的OFDM信号,具体涉及分组码、格雷(Golay)码和雷德密勒(Reed-muller)码等。Golay码开创了一种构造低PAPR码组的有效方法,并且已经成功地应用于无线ATM系统。另外,Golay码与信道编解码技术结合起来可以形成既有较低PAPR又有较好信道纠检错能力的码组。
4.3 符号扰码技术
亦称选择映射和部分发送技术,又可以作为信号编码技术的特例,这种方法的基本原理是对输入信号同时进行多种扰码处理,选择PAPR最小的输出信号发送出去,对于不相关的扰码序列,产生的OFDM信号与其对应的PAPR也是不相关的。所以,如果未经扰码的OFDM符号的PAPR超出某一值的概率为p,那么,通过k种扰码处理并优选后该概率降低到pk。因此,符号扰码技术并不保证PAPR降低到某一值以下,而是减小高PAPR发生的概率。选择映射是对所有子载波进行各自独立的扰码处理,部分发送技术仅对子载波组进行扰码处理。
4.4 信号空间扩展技术
新近提出的基于信号空间扩展降低PAPR方法,其基本思想是在OFDM调制方案中,通过减少使用的载波数使信号空间得以扩展,然后,选择其中较低PAPR的组合与发送信号建立映射关系,从而降低整个OFDM系统的PAPR。该方法的关键是通过仿真得到不同子载波数N,不同信息速率下的最佳映射表,对于N 较大的情况,同样可以直接通过最佳映射表实现,但仿真运算量巨大,也可以通过N值较小的几个系统并行搭建。当然,两种方法的降低PAPR性能和系统误码率性能会有所不同。
信号发生器 振荡器 DSP 滤波器 数字电视 放大器 仿真 相关文章:
- 感应无线位置检测系统设计与实现(06-26)
- RF WCDMA 基准比较测试白皮书(05-25)
- 3G MIMO技术的实现挑战与解决方案(06-02)
- 基于简化HDLC规程的通信卡及驱动程序设计(02-12)
- 3GPP LTE的预编码和空间多路复用MIMO技术(09-23)
- 超高频RFID读写器射频前端设计与仿真(03-24)
