基于IBM GPM模型的DDR2接口信号完整性分析
时间:10-11
来源:互联网
点击:
4.2 拓扑结构:
GPM模型能够精确地对芯片内部包括封装进行建模,也支持客户加入PCB上引入的实际负载信息,同时拓扑结构也很方便修改。图5中显示的就是DDR2在“读”操作和“写”操作时DQS(差分)和DQ(单端)的拓扑结构。
图5 GPM实际拓扑结构示意图
当然PCB实际负载可以是S参数模型,也可以是W-Element模型。在仿真过程中,需要考虑实际系统中的各种非连续效应,如阻抗匹配问题,源端终端反射,线间耦合等.
4.3 同步开关噪声(SSN):
GPM模型可以很好地支持对同步开关噪声(SSN)进行分析,从而确定芯片布局时所加入的去耦电容是否足够,最终的分析结果可以用来指导芯片的布局,通过增加去耦电容的数量,减少IO和逻辑的密度等方法来满足芯片电源噪声的要求,同时可以联合PCB负载仿真得到板级去耦策略。
图6 VDD电压波形
图6是用GPM模型仿真得到的芯片VDD的波形。波形中50ns到60ns之间的一个电压低谷代表了IO同时开始翻转的时刻,而叠加在整个波形中的纹波则体现了GPM窗口中除IO以外的其余逻辑电路翻转对VDD的影响。在设计中需要保证最低电压不低于电路所需的最低电压,一般需满足15%的纹波限制,根据不同的电压域和IO类型,也会有所不同。
4.4 时序分析:
这里重点介绍利用GPM模型分析DQ与DQS之间的时序关系。在时序分析中最重要的就是通过分析建立时间(setup time)和保持时间(hold time)的裕量(margin)来评估系统的信号质量和稳定性。通常以有效时序窗口(Timing Window)概念来计算,所谓有效时序窗口,是指数据信号从发送端传输到接收端时,建立时间和保持时间的总和(如图7),其取决于板级、封装设计以及接口电路模式的选择。
图7 有效时序窗口--Timing Window
其中,JEDEC标准里规定了Vih(ac/dc)和Vil(ac/dc),如表2所示。
表2 Vih/Vil的ac和dc值
通过配置不同读写模式,驱动能力和片上端接电阻对有效时序窗口大小的分析,我们可以得到关于时序最优的解决方案。表3是用GPM模型对这几种情况下分析的结果:
表3 各种情况下Timing Window
从表3可以看出,在“写”的情况下,驱动能力为“Half”,ODT为75ohm端接时,时序有效窗口最大,相应的建立时间和保持时间的裕量最大;在“读”的情况下,同是“Full”强驱动,打开ODT和关闭ODT也会有不同的效果,前者会更好。
5. 结论
1)本文通过实例介绍了基于GPM的DDR2 高速接口的设计和仿真,接口信号完整性与封装结构、芯片布局、IO类型、板级走线、驱动负载紧密相关,我们可以通过系统应用的实际需求进行设计和仿真。
2)由于GPM的建模对设计文件的依赖性较少,所以在进行芯片布局的同时就可以开始进行模型的建立和分析,对芯片的布局设计提供了很好的指导,并成为芯片电源噪声的签收标准之一。
3)GPM可以导入客户的PCB互联模型,用于对IO的时序和信号完整性进行分析。模型中包含了电源网络的信息,仿真得到的结果也包含了SSN的信息,更加接近实际的应用环境。可以用于能指导ASIC的设计团队完成IO的时序收敛,客户PCB的系统设计。
4)GPM模型中IO的模型采用IBM自行研发的IO buffer的SPICE模型,对各种高速接口(如DDR2)的建模与仿真,可以达到非常高的精度。同时,GPM 仿真可以在设计初期对芯片、封装和板级设计提供指导,从而极大的减少整个系统设计和验证的周期。
GPM模型能够精确地对芯片内部包括封装进行建模,也支持客户加入PCB上引入的实际负载信息,同时拓扑结构也很方便修改。图5中显示的就是DDR2在“读”操作和“写”操作时DQS(差分)和DQ(单端)的拓扑结构。
图5 GPM实际拓扑结构示意图
当然PCB实际负载可以是S参数模型,也可以是W-Element模型。在仿真过程中,需要考虑实际系统中的各种非连续效应,如阻抗匹配问题,源端终端反射,线间耦合等.
4.3 同步开关噪声(SSN):
GPM模型可以很好地支持对同步开关噪声(SSN)进行分析,从而确定芯片布局时所加入的去耦电容是否足够,最终的分析结果可以用来指导芯片的布局,通过增加去耦电容的数量,减少IO和逻辑的密度等方法来满足芯片电源噪声的要求,同时可以联合PCB负载仿真得到板级去耦策略。
图6 VDD电压波形
图6是用GPM模型仿真得到的芯片VDD的波形。波形中50ns到60ns之间的一个电压低谷代表了IO同时开始翻转的时刻,而叠加在整个波形中的纹波则体现了GPM窗口中除IO以外的其余逻辑电路翻转对VDD的影响。在设计中需要保证最低电压不低于电路所需的最低电压,一般需满足15%的纹波限制,根据不同的电压域和IO类型,也会有所不同。
4.4 时序分析:
这里重点介绍利用GPM模型分析DQ与DQS之间的时序关系。在时序分析中最重要的就是通过分析建立时间(setup time)和保持时间(hold time)的裕量(margin)来评估系统的信号质量和稳定性。通常以有效时序窗口(Timing Window)概念来计算,所谓有效时序窗口,是指数据信号从发送端传输到接收端时,建立时间和保持时间的总和(如图7),其取决于板级、封装设计以及接口电路模式的选择。
图7 有效时序窗口--Timing Window
其中,JEDEC标准里规定了Vih(ac/dc)和Vil(ac/dc),如表2所示。
表2 Vih/Vil的ac和dc值
通过配置不同读写模式,驱动能力和片上端接电阻对有效时序窗口大小的分析,我们可以得到关于时序最优的解决方案。表3是用GPM模型对这几种情况下分析的结果:
表3 各种情况下Timing Window
从表3可以看出,在“写”的情况下,驱动能力为“Half”,ODT为75ohm端接时,时序有效窗口最大,相应的建立时间和保持时间的裕量最大;在“读”的情况下,同是“Full”强驱动,打开ODT和关闭ODT也会有不同的效果,前者会更好。
5. 结论
1)本文通过实例介绍了基于GPM的DDR2 高速接口的设计和仿真,接口信号完整性与封装结构、芯片布局、IO类型、板级走线、驱动负载紧密相关,我们可以通过系统应用的实际需求进行设计和仿真。
2)由于GPM的建模对设计文件的依赖性较少,所以在进行芯片布局的同时就可以开始进行模型的建立和分析,对芯片的布局设计提供了很好的指导,并成为芯片电源噪声的签收标准之一。
3)GPM可以导入客户的PCB互联模型,用于对IO的时序和信号完整性进行分析。模型中包含了电源网络的信息,仿真得到的结果也包含了SSN的信息,更加接近实际的应用环境。可以用于能指导ASIC的设计团队完成IO的时序收敛,客户PCB的系统设计。
4)GPM模型中IO的模型采用IBM自行研发的IO buffer的SPICE模型,对各种高速接口(如DDR2)的建模与仿真,可以达到非常高的精度。同时,GPM 仿真可以在设计初期对芯片、封装和板级设计提供指导,从而极大的减少整个系统设计和验证的周期。
电流 电路 仿真 电容 PCB 电阻 PIC 电压 相关文章:
- 光纤大电流传感器研究(01-20)
- USB3.0过电流保护PPTC组件应用解决方案(02-06)
- 通信系统中超高效率Buck变换器设计考虑(05-02)
- 基于MSP430单片机和nRF905的无线通信系统(06-18)
- 基于MSP430的无线传感器网络设计(06-20)
- ADI针对基站和卫星通信的高线性度RF前端解决方案(07-24)