极低功耗无线收发集成芯片CC1000
时间:03-08
来源:互联网
点击:
引言
CC1000是根据Chipcon公司的SmartRF技术,在0.35μm CMOS 工艺下制造的一种理想的超高频单片收发通信芯片。它的工作频带在315、868及915MHz,但CC1000很容易通过编程使其工作在 300~1000MHz范围内。它具有低电压(2.3~3.6V),极低的功耗,可编程输出功率(-20~10dBm),高灵敏度(一般 -109dBm),小尺寸(TSSOP-28封装),集成了位同步器等特点。其FSK数传可达72.8Kbps,具有250Hz步长可编程频率能力,适用于跳频协议;主要工作参数能通过串行总线接口编程改变,使用非常灵活。
1 电路结构
图1所示为CC1000的简化模块图。在接收模式下,CC1000可看成是一个传统的超外差接收器。射频(RF)输入信号经低噪声放大器(LNA)放大后翻转进入混频器,通过混频器混频产生中频(IF)信号。在中频处理阶段,该信号在送入解调器之前被放大和滤波。可选的RSSI信号和IF信号也可通过混频产生于引脚RSSI/IF。解调后,CC1000从引脚DIO输出解调数字信号,解调信号的同步性由芯片上的PCLK提供的时钟信号完成。
图1 CC1000的简化模块图
在发送模式下,压控振荡器(VCO)输出的信号直接送入功率放大器(PA)。射频输出是通过加在DIO脚上的数据进行控制的,称为移频键控(FSK)。这种内部T/R切换电路使天线的连接和匹配设计更容易。
频率合成器产生的本振信号,在接收状态下送入功放。频率合成器是由晶振(XOSC)、鉴相器(PD)、充电脉冲、VCO以及分频器(/R和/N)构成,外接的晶体必须与XOSC引脚相连,只有外围电感需要与VCO相连。
2 应用电路
CC1000工作时外围元件很少,典型的应用电路如图2所示。当配置CC1000不同的发射频率时,外围元器件参数也不同,具体参数请见参考文献[1]。
图2 CC1000的典型应用电路图
3 三线串行数据口
CC1000 可通过简单的三线串行接口(PDATA、 PCLK 和PALE) 进行编程,有36个8位配置寄存器,每个由7位地址寻址。一个完整的CC1000配置,要求发送29个数据帧,每个16位(7个地址位,1个读/写位和8 个数据位)。PCLK 频率决定了完全配置所需的时间。在10MHz的PCLK频率工作下,完成整个配置所需时间少于60μs。在低电位模式设置时,仅需发射一个帧,所需时间少于2μs。所有寄存器都可读。在每次写循环中,16位字节送入PDATA通道,每个数据帧中7个最重要的位(A6:0)是地址位,A6是MSB(最高位),首先被发送。下一个发送的位是读/写位(高电平写,低电平读),在传输地址和读/写位期间,PALE (编程地址锁存使能)必须保持低电平,接着传输8 个数据位(D7: 0),如图3所示。表1是对各参数的说明。PDATA 在PCLK 下降沿有效。当8位数据位中的最后一个字节位D0 装入后,整个数据字才被装入内部配置寄存器中。经过低电位状态下编程的配置信息才会有效,但是不能关闭电源。
图3 CC1000写操作的编程时序图
表1 串行接口时序说明
微控制器通过相同的接口也能读出配置寄存器。首先,发送7位地址位,然后读/写位设为低电平,用来初始化读回的数据。接着,CC1000从寻址寄存器中返回数据。此时,PDATA 用作输出口,在读回数据期间(D7:0),微控制器必须把它设成三态,或者在引脚开路时设为高电平。读操作的时序如图4所示。
图4 CC1000读操作的编程时序图
4 与微控制器连接
微控制器使用3个输出引脚用于接口(PDATA、PCLK、PALE),与PDATA相连的引脚必须是双向引脚,用于发送和接收数据。提供数据计时的 DCLK 应与微控制器输入端相连,其余引脚用来监视LOCK 信号(在引脚CHP_OUT)。当PLL 锁定时,该信号为逻辑高电平。图5为P87LPC762单片机与CC1000接口示意图。
图5 接口示意图
P87LPC762单片机写CC1000内部寄存器的程序如下:
write_com(uchar addr,uchar com_data)//写内部寄存器子程序
{ char i;
addr<<=1;
pale=0; //允许地址锁存
for(i=0;i<7;i++) { //送地址
addr<<=1;
p_data=CY;
pclk=0; //上升沿
pclk=1;
}
p_data=1; //写操作
pclk=0;
pclk=1;
pale=1; //禁止地址锁存
for(i=0;i<8;i++){
com_data<<=1;
p_data=CY;
pclk=0;
pclk=1;
}
}
结语
当调制数据时,CC1000能被设置成三种不同的数据形式,分别为同步NRZ模式、同步曼彻斯特码模式、异步传输(UART)模式。为了满足电池供电情况下严格的电源损耗要求,CC1000 提供了十分方便的电源管理方法。通过MAIN 寄存器控制低电平模式,有单独的位控制接收部分、发射部分、频率合成以及晶振。这种独立控制可用来优化在某个应用中最低可能达到的电流损耗。CC1000 优良的性能使它主要应用于ISM(工业、科学及医疗)方面以及SRD(短距离通信)。
CC1000是根据Chipcon公司的SmartRF技术,在0.35μm CMOS 工艺下制造的一种理想的超高频单片收发通信芯片。它的工作频带在315、868及915MHz,但CC1000很容易通过编程使其工作在 300~1000MHz范围内。它具有低电压(2.3~3.6V),极低的功耗,可编程输出功率(-20~10dBm),高灵敏度(一般 -109dBm),小尺寸(TSSOP-28封装),集成了位同步器等特点。其FSK数传可达72.8Kbps,具有250Hz步长可编程频率能力,适用于跳频协议;主要工作参数能通过串行总线接口编程改变,使用非常灵活。
1 电路结构
图1所示为CC1000的简化模块图。在接收模式下,CC1000可看成是一个传统的超外差接收器。射频(RF)输入信号经低噪声放大器(LNA)放大后翻转进入混频器,通过混频器混频产生中频(IF)信号。在中频处理阶段,该信号在送入解调器之前被放大和滤波。可选的RSSI信号和IF信号也可通过混频产生于引脚RSSI/IF。解调后,CC1000从引脚DIO输出解调数字信号,解调信号的同步性由芯片上的PCLK提供的时钟信号完成。
图1 CC1000的简化模块图
在发送模式下,压控振荡器(VCO)输出的信号直接送入功率放大器(PA)。射频输出是通过加在DIO脚上的数据进行控制的,称为移频键控(FSK)。这种内部T/R切换电路使天线的连接和匹配设计更容易。
频率合成器产生的本振信号,在接收状态下送入功放。频率合成器是由晶振(XOSC)、鉴相器(PD)、充电脉冲、VCO以及分频器(/R和/N)构成,外接的晶体必须与XOSC引脚相连,只有外围电感需要与VCO相连。
2 应用电路
CC1000工作时外围元件很少,典型的应用电路如图2所示。当配置CC1000不同的发射频率时,外围元器件参数也不同,具体参数请见参考文献[1]。
图2 CC1000的典型应用电路图
3 三线串行数据口
CC1000 可通过简单的三线串行接口(PDATA、 PCLK 和PALE) 进行编程,有36个8位配置寄存器,每个由7位地址寻址。一个完整的CC1000配置,要求发送29个数据帧,每个16位(7个地址位,1个读/写位和8 个数据位)。PCLK 频率决定了完全配置所需的时间。在10MHz的PCLK频率工作下,完成整个配置所需时间少于60μs。在低电位模式设置时,仅需发射一个帧,所需时间少于2μs。所有寄存器都可读。在每次写循环中,16位字节送入PDATA通道,每个数据帧中7个最重要的位(A6:0)是地址位,A6是MSB(最高位),首先被发送。下一个发送的位是读/写位(高电平写,低电平读),在传输地址和读/写位期间,PALE (编程地址锁存使能)必须保持低电平,接着传输8 个数据位(D7: 0),如图3所示。表1是对各参数的说明。PDATA 在PCLK 下降沿有效。当8位数据位中的最后一个字节位D0 装入后,整个数据字才被装入内部配置寄存器中。经过低电位状态下编程的配置信息才会有效,但是不能关闭电源。
图3 CC1000写操作的编程时序图
表1 串行接口时序说明
微控制器通过相同的接口也能读出配置寄存器。首先,发送7位地址位,然后读/写位设为低电平,用来初始化读回的数据。接着,CC1000从寻址寄存器中返回数据。此时,PDATA 用作输出口,在读回数据期间(D7:0),微控制器必须把它设成三态,或者在引脚开路时设为高电平。读操作的时序如图4所示。
图4 CC1000读操作的编程时序图
4 与微控制器连接
微控制器使用3个输出引脚用于接口(PDATA、PCLK、PALE),与PDATA相连的引脚必须是双向引脚,用于发送和接收数据。提供数据计时的 DCLK 应与微控制器输入端相连,其余引脚用来监视LOCK 信号(在引脚CHP_OUT)。当PLL 锁定时,该信号为逻辑高电平。图5为P87LPC762单片机与CC1000接口示意图。
图5 接口示意图
P87LPC762单片机写CC1000内部寄存器的程序如下:
write_com(uchar addr,uchar com_data)//写内部寄存器子程序
{ char i;
addr<<=1;
pale=0; //允许地址锁存
for(i=0;i<7;i++) { //送地址
addr<<=1;
p_data=CY;
pclk=0; //上升沿
pclk=1;
}
p_data=1; //写操作
pclk=0;
pclk=1;
pale=1; //禁止地址锁存
for(i=0;i<8;i++){
com_data<<=1;
p_data=CY;
pclk=0;
pclk=1;
}
}
结语
当调制数据时,CC1000能被设置成三种不同的数据形式,分别为同步NRZ模式、同步曼彻斯特码模式、异步传输(UART)模式。为了满足电池供电情况下严格的电源损耗要求,CC1000 提供了十分方便的电源管理方法。通过MAIN 寄存器控制低电平模式,有单独的位控制接收部分、发射部分、频率合成以及晶振。这种独立控制可用来优化在某个应用中最低可能达到的电流损耗。CC1000 优良的性能使它主要应用于ISM(工业、科学及医疗)方面以及SRD(短距离通信)。
CMOS 电压 总线 电路 射频 放大器 振荡器 功率放大器 电感 电路图 单片机 电源管理 电流 嵌入式 相关文章:
- SoC面临挑战,智能分割顺势而起(11-07)
- PC电源常见故障判断分析与排除 (04-16)
- UWB定位,新一代的精确定位技术(09-20)
- 本土单芯片射频收发器帮助减少TD-SCDMA商用障碍 (11-20)
- TD-SCDMA技术获突破,首颗CMOS单芯片射频芯片完成流片(01-06)
- USB 2.0高速端口的ESD保护(07-28)