基于STM32F103RB和CC1101的无线数传模块设计
3 主控部分原理
3 无线射频模块PCB设计
采集模块的PCB制板重点是射频部分的设计。PCB布局对射频电路具有很大的影响,在制板时如果不合理布局会导致模块整体性能下降,甚至无法工作。对于射频电路,首先尽量选用封装小的元器件,CC1101模块中电容尧电感和电阻都采用0402封装。其次,元器件排列要紧密,尤其是巴伦电路和相应的滤波电路,这样做能够有效的抑制分布参数的产生,降低分布参数对电路输出阻抗的影响。再次对射频芯片的电源做隔离处理,和其他模块的电源要分开,CC1101模块采用磁珠和微控制器电源进行隔离。最后滤波电容要尽量靠近需要滤波的器件或者网络,减少外部干扰的几率,提高抗干扰能力。射频模块PCB图以及实物图如4所示。
图4 射频模块PCB和实物图
4 实物测试
通过优化得到电路图,投板,生产PCB。焊接好元器件。为了检验输出模块的性能,要进行测试无线模块通信链路的输出功率测试。选用安捷伦频谱分析仪E9060A测试模块的最大输出功率。设置CC1101输出功率寄存器PATABALE=0xC0,即输出功率预设10dbm。实际测试输出端功率为10.16dbm,如图5所示。
图5 无线模块最大输出功率测试图
在空旷场地实际测量,最大稳定通信距离可达到400m,数据丢包小于1.5%。
5 结束语
根据实际要求,设计和生产了工作在430.99-434MHz的无线数传模块。由测量得到的数据可知,该无线数传模块在400米范围内可正常使用。由于受设备和测量条件的限制,对一些其他参数并未进行测量,这是日后要完善的地方。当有特殊场合需较远的通信距离的应用时,可以在CC1101的输出端加上功率放大器,提高发射功;曰在RF输入端加一级低噪声放大器,以一步提高接收灵敏度。根据应用场合,对电路的改进也是日后工作的重点之一。
- STM32的曼彻斯特编译码系统设计(02-04)
- STM32学习:ADC/DMA/USART(07-25)
- 采用ARM Cortex-M3单片机和DSP的逆变电源设计(06-24)
- STM32 ADC的采样周期确定(02-22)
- 详解GPIO在STM32中的几种工作模式(09-24)
- 三极管做开关扩流的常用电路及使用误区(01-26)